JSONForms项目中基于值的枚举过滤器实现方案
2025-07-01 21:11:06作者:幸俭卉
在JSONForms表单生成器的实际应用中,开发者经常会遇到需要根据前置字段值动态过滤后续字段枚举选项的场景。本文将以一个典型的会计系统结构为例,深入探讨如何优雅地实现这种动态过滤功能。
业务场景分析
考虑一个常见的公司成本中心管理场景,不同公司拥有不同的成本中心集合:
公司1 -> 成本中心A/B/C
公司2 -> 成本中心B/C/D
这种层级关系要求在前端表单中,当用户选择"公司1"时,成本中心下拉框只能显示A/B/C三个选项;选择"公司2"时则显示B/C/D。
JSON Schema实现方案
最直观的实现方式是使用JSON Schema的if-then条件语句:
{
"if": {
"properties": {
"company": { "const": "Company1" }
}
},
"then": {
"properties": {
"cost-centers": {
"items": {
"properties": {
"cost-center": {
"enum": ["cost-center-a", "cost-center-b", "cost-center-c"]
}
}
}
}
}
}
}
虽然这种方案在技术上可行,但存在两个主要问题:
- 所有成本中心选项仍然会出现在所有公司的下拉框中
- 需要为每个公司编写重复的条件判断逻辑
更优解决方案:自定义渲染器
JSONForms核心团队成员建议采用自定义渲染器方案,这被认为是更清晰、更易维护的解决方案。其优势在于:
- 关注点分离:业务逻辑与UI表现分离
- 灵活性:可以自由定义过滤规则
- 可维护性:不需要同步维护JSON Schema和UI Schema
实现思路是创建一个专门处理枚举过滤的自定义渲染器,它会:
- 监听前置字段(如公司选择)的变化
- 根据当前值查询JSON Schema中的约束条件
- 动态过滤后续字段(如成本中心)的可用选项
技术实现建议
对于React技术栈的实现,可以:
const DynamicEnumRenderer = ({ schema, uischema, path, data }) => {
// 1. 解析schema中的条件约束
const constraints = extractConstraints(schema);
// 2. 监听依赖字段变化
const [filteredOptions, setFilteredOptions] = useState([]);
useEffect(() => {
const activeConstraints = findActiveConstraints(data, constraints);
setFilteredOptions(activeConstraints.enum || []);
}, [data.company]);
// 3. 渲染过滤后的下拉框
return <Select options={filteredOptions} />;
};
最佳实践
- 约定优于配置:在团队内部约定条件约束的表示方式
- 性能优化:对于大型枚举集合考虑虚拟滚动
- 错误处理:提供有意义的空状态提示
- 可测试性:确保过滤逻辑有完善的单元测试
总结
在JSONForms项目中实现动态枚举过滤时,相比复杂的条件JSON Schema,采用自定义渲染器是更优雅的解决方案。这种方法不仅解决了业务需求,还保持了代码的清晰性和可维护性,是处理此类动态表单场景的推荐实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
299
暂无简介
Dart
710
170
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
React Native鸿蒙化仓库
JavaScript
284
332
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
429
130