Microsoft Olive项目中的ONNX Runtime推理模型更新指南
Microsoft Olive是一个用于优化和转换机器学习模型的工具,近期其文档中关于使用ONNX Runtime进行模型推理的部分需要进行更新。本文将详细介绍这一变更的技术背景和使用方法。
背景介绍
在机器学习模型部署过程中,ONNX Runtime是一个广泛使用的高性能推理引擎。Microsoft Olive项目提供了将模型转换为ONNX格式并优化部署的完整流程。然而,随着ONNX Runtime GenAI库的API更新,原有的示例代码需要进行相应调整。
问题描述
在原有文档中,使用ONNX Runtime进行推理的示例代码包含以下关键片段:
params.input_ids = input_tokens
generator.compute_logits()
这段代码在新的API版本中已经不再适用,会导致运行时错误。这是由于ONNX Runtime GenAI库对生成式AI模型的接口进行了重构,以提供更清晰和一致的API设计。
解决方案
根据最新的API变更,正确的使用方式应该调整为:
# 创建生成器实例
generator = ort_genai.Generator(model_path)
# 准备输入参数
params = ort_genai.GeneratorParams(model_path)
params.input_ids = input_tokens
# 执行推理
output = generator.generate(params)
技术细节
这一变更反映了ONNX Runtime GenAI库对生成式AI模型推理流程的重新设计:
-
Generator类重构:现在Generator类专注于生成过程的管理,不再直接暴露计算logits的方法
-
参数分离:将模型参数和运行时参数分离到不同的类中,提高了代码的模块化程度
-
简化接口:新的generate方法封装了完整的生成流程,包括logits计算和采样过程
最佳实践
对于使用Microsoft Olive和ONNX Runtime进行模型部署的开发者,建议:
-
定期检查依赖库的更新日志,特别是API变更
-
在升级ONNX Runtime版本时,仔细测试推理代码
-
参考官方示例代码的最新版本进行开发
-
考虑在项目中添加API版本检查,确保兼容性
结论
随着AI加速库的快速发展,API变更在所难免。Microsoft Olive项目团队已经及时更新了文档以反映这些变化。开发者在使用这些工具时应当保持对最新文档的关注,以确保模型部署流程的顺利进行。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









