Microsoft Olive项目中的ONNX Runtime推理模型更新指南
Microsoft Olive是一个用于优化和转换机器学习模型的工具,近期其文档中关于使用ONNX Runtime进行模型推理的部分需要进行更新。本文将详细介绍这一变更的技术背景和使用方法。
背景介绍
在机器学习模型部署过程中,ONNX Runtime是一个广泛使用的高性能推理引擎。Microsoft Olive项目提供了将模型转换为ONNX格式并优化部署的完整流程。然而,随着ONNX Runtime GenAI库的API更新,原有的示例代码需要进行相应调整。
问题描述
在原有文档中,使用ONNX Runtime进行推理的示例代码包含以下关键片段:
params.input_ids = input_tokens
generator.compute_logits()
这段代码在新的API版本中已经不再适用,会导致运行时错误。这是由于ONNX Runtime GenAI库对生成式AI模型的接口进行了重构,以提供更清晰和一致的API设计。
解决方案
根据最新的API变更,正确的使用方式应该调整为:
# 创建生成器实例
generator = ort_genai.Generator(model_path)
# 准备输入参数
params = ort_genai.GeneratorParams(model_path)
params.input_ids = input_tokens
# 执行推理
output = generator.generate(params)
技术细节
这一变更反映了ONNX Runtime GenAI库对生成式AI模型推理流程的重新设计:
-
Generator类重构:现在Generator类专注于生成过程的管理,不再直接暴露计算logits的方法
-
参数分离:将模型参数和运行时参数分离到不同的类中,提高了代码的模块化程度
-
简化接口:新的generate方法封装了完整的生成流程,包括logits计算和采样过程
最佳实践
对于使用Microsoft Olive和ONNX Runtime进行模型部署的开发者,建议:
-
定期检查依赖库的更新日志,特别是API变更
-
在升级ONNX Runtime版本时,仔细测试推理代码
-
参考官方示例代码的最新版本进行开发
-
考虑在项目中添加API版本检查,确保兼容性
结论
随着AI加速库的快速发展,API变更在所难免。Microsoft Olive项目团队已经及时更新了文档以反映这些变化。开发者在使用这些工具时应当保持对最新文档的关注,以确保模型部署流程的顺利进行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00