Microsoft Olive项目中的ONNX Runtime推理模型更新指南
Microsoft Olive是一个用于优化和转换机器学习模型的工具,近期其文档中关于使用ONNX Runtime进行模型推理的部分需要进行更新。本文将详细介绍这一变更的技术背景和使用方法。
背景介绍
在机器学习模型部署过程中,ONNX Runtime是一个广泛使用的高性能推理引擎。Microsoft Olive项目提供了将模型转换为ONNX格式并优化部署的完整流程。然而,随着ONNX Runtime GenAI库的API更新,原有的示例代码需要进行相应调整。
问题描述
在原有文档中,使用ONNX Runtime进行推理的示例代码包含以下关键片段:
params.input_ids = input_tokens
generator.compute_logits()
这段代码在新的API版本中已经不再适用,会导致运行时错误。这是由于ONNX Runtime GenAI库对生成式AI模型的接口进行了重构,以提供更清晰和一致的API设计。
解决方案
根据最新的API变更,正确的使用方式应该调整为:
# 创建生成器实例
generator = ort_genai.Generator(model_path)
# 准备输入参数
params = ort_genai.GeneratorParams(model_path)
params.input_ids = input_tokens
# 执行推理
output = generator.generate(params)
技术细节
这一变更反映了ONNX Runtime GenAI库对生成式AI模型推理流程的重新设计:
-
Generator类重构:现在Generator类专注于生成过程的管理,不再直接暴露计算logits的方法
-
参数分离:将模型参数和运行时参数分离到不同的类中,提高了代码的模块化程度
-
简化接口:新的generate方法封装了完整的生成流程,包括logits计算和采样过程
最佳实践
对于使用Microsoft Olive和ONNX Runtime进行模型部署的开发者,建议:
-
定期检查依赖库的更新日志,特别是API变更
-
在升级ONNX Runtime版本时,仔细测试推理代码
-
参考官方示例代码的最新版本进行开发
-
考虑在项目中添加API版本检查,确保兼容性
结论
随着AI加速库的快速发展,API变更在所难免。Microsoft Olive项目团队已经及时更新了文档以反映这些变化。开发者在使用这些工具时应当保持对最新文档的关注,以确保模型部署流程的顺利进行。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00