C-Plus-Plus项目中通配符匹配算法的缺陷分析与修复
2025-05-04 18:36:24作者:齐冠琰
在C-Plus-Plus项目的回溯算法实现中,wildcard_matching模块用于解决通配符匹配问题。该算法旨在判断给定的字符串是否与包含通配符的模式相匹配,其中"?"可以匹配任意单个字符,"*"可以匹配任意字符序列(包括空序列)。
问题描述
该算法实现中存在一个关键缺陷:在连续多次调用时,由于使用了全局的dpTable来存储中间计算结果,且没有在每次调用之间正确重置该表,导致后续测试用例会受到前一次计算结果的影响。具体表现为:
- 在测试用例4中,字符串"baaabab"与模式"a*ab"明显不匹配,但算法错误地返回了匹配成功
- 在测试用例5中,字符串"baaabab"与模式"aa?ab"同样不匹配,但算法也错误地返回了匹配成功
技术分析
该算法采用了动态规划的回溯方法,使用一个二维数组dpTable来存储中间计算结果以避免重复计算。dpTable[pos1][pos2]表示从字符串位置pos1和模式位置pos2开始是否能够匹配。
问题根源在于dpTable被定义为全局变量,并且在多次测试调用之间没有完全重置。虽然测试代码中调用了init_dpTable()函数来重置表,但可能存在以下问题:
- 重置范围不足:dpTable的大小被固定为1000x1000,但实际测试中可能需要更大的空间
- 重置时机不当:在某些情况下可能遗漏了重置操作
解决方案
正确的做法应该是在每次调用wildcard_matching函数前,确保dpTable被完全重置。这可以通过以下方式实现:
- 将dpTable作为局部变量而非全局变量
- 或者在每次调用前彻底清空并重新初始化dpTable
- 确保init_dpTable()函数能够覆盖所有可能用到的表范围
项目维护者已经添加了init_dpTable()函数并在每个测试用例前调用它,这解决了大部分问题。但更好的做法是重构代码,避免使用全局状态,使算法更加健壮和可预测。
算法优化建议
除了修复当前的问题外,该算法还可以从以下几个方面进行优化:
- 使用迭代而非递归实现动态规划,避免栈溢出风险
- 采用更高效的内存管理策略,如按需分配而非固定大小的表
- 添加输入验证,确保字符串和模式的有效性
- 实现更智能的模式预处理,如合并连续的"*"通配符
通配符匹配是一个经典的算法问题,正确的实现对于许多应用场景如文件搜索、文本处理等都至关重要。通过修复这个缺陷,C-Plus-Plus项目的wildcard_matching算法将更加可靠,能够正确处理各种边界情况和连续多次调用场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
788
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
766
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232