libarchive项目中bsdtar工具对Zstd压缩包校验和的支持问题
在文件压缩和归档领域,校验和(checksum)是一项重要的数据完整性保障机制。近期在libarchive项目中发现了一个关于bsdtar工具生成Zstandard(.zst)压缩包时缺失校验和的问题,这个问题影响了使用libarchive库的各种工具(如file-roller等)生成的Zstd压缩包。
问题背景
Zstandard(Zstd)是一种现代的高效压缩算法,由Facebook开发并开源。它支持多种校验和算法,默认使用XXH64哈希算法来验证数据完整性。然而,当使用bsdtar工具(基于libarchive)创建.tar.zst归档文件时,生成的压缩包中缺少了这项重要的校验信息。
技术细节分析
通过对比测试可以清楚地观察到这个问题:
- 直接使用bsdtar创建Zstd压缩包时,生成的归档文件没有校验和
- 通过管道将bsdtar输出传递给zstd命令行工具时,生成的归档文件包含XXH64校验和
根本原因在于libarchive的Zstd压缩过滤器(archive_write_add_filter_zstd.c)没有正确设置ZSTD_c_checksumFlag参数。这个参数控制着Zstd压缩过程中是否生成并嵌入校验和。
解决方案实现
libarchive开发团队迅速响应并解决了这个问题。解决方案的关键点包括:
- 在Zstd压缩初始化阶段设置校验和标志
- 不需要提供配置选项,直接默认启用校验和功能
- 保持与zstd命令行工具的行为一致
实现上,主要修改了archive_write_add_filter_zstd.c文件,在适当的位置设置了ZSTD_c_checksumFlag参数。这个修改确保了所有通过libarchive生成的Zstd压缩包都会包含校验和信息。
验证与影响
修改后的验证测试显示:
- bsdtar生成的Zstd压缩包现在正确包含XXH64校验和
- 文件大小略有增加(从127B增加到131B),这是加入校验和的正常开销
- 使用file-roller等图形界面工具生成的Zstd压缩包也同样受益
这项改进增强了数据完整性验证能力,使得通过libarchive生成的Zstd压缩包与直接使用zstd工具生成的文件具有相同的校验特性。对于依赖数据完整性的应用场景(如软件包分发、备份等)来说,这是一个重要的质量提升。
总结
libarchive项目团队快速响应并解决了Zstd校验和缺失的问题,展现了开源社区高效协作的优势。这个改进使得基于libarchive的工具链生成的Zstd压缩包更加可靠,与生态系统中的其他工具保持了一致性。对于用户而言,这意味着更好的数据安全保障,无需额外操作即可获得完整的数据校验能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









