im4d 的安装和配置教程
2025-05-25 00:28:53作者:蔡丛锟
项目基础介绍
im4d 是一个用于动态场景的高保真实时新视角合成的开源项目。该项目旨在通过新颖的算法和神经网络技术,实现对动态场景的实时渲染和新视角的合成。项目的主要编程语言是 Python。
项目使用的关键技术和框架
本项目使用了以下关键技术和框架:
- 基于神经辐射场(NeRF)的技术:通过学习场景的连续体积表示,实现高质量的新视角合成。
- 多视图图像渲染技术:结合多个相机视角的信息,提高渲染效果的真实感。
- 深度学习框架:主要使用了 PyTorch 深度学习库进行模型训练和渲染。
项目安装和配置的准备工作
在开始安装和配置 im4d 之前,请确保您的系统满足了以下要求:
- 操作系统:Ubuntu(建议版本)
- Python 环境:Python 3.10
- GPU:NVIDIA GPU(支持 CUDA)
- 相关库:PyTorch、torchvision、torchaudio、NVIDIA 的 tiny-cuda-nn 绑定
安装步骤
-
设置 Python 环境
首先,创建一个新的 Python 虚拟环境并激活它:
conda create -n im4d python=3.10 conda activate im4d -
安装依赖库
接下来,安装 PyTorch 和其他必要的库:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia # PyTorch 2.0.1 pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch pip install -r requirements.txt -
设置工作空间
定义一个工作空间路径,用于存放数据集、训练日志、检查点文件和结果:
export workspace=$PATH_TO_YOUR_WORKSPACE -
准备数据集
根据项目要求准备所需的数据集。项目支持 ZJU-MoCap、NHR 和 DNA-Rendering 数据集。请按照项目说明下载并放置到相应的工作空间目录下。
-
测试和训练
根据项目的说明文档,进行测试或训练。以下是测试的一个示例命令:
python run.py --type evaluate --cfg_file configs/exps/im4d/xx_dataset/xx_scene.yaml save_result True训练的命令如下:
python train_net.py --cfg_file configs/exps/im4d/xx_dataset/xx_scene.yaml
完成以上步骤后,您应该能够成功安装和配置 im4d 项目,并开始您的实验和研究了。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818