KoboldCpp 使用教程
1. 项目介绍
KoboldCpp 是一个易于使用的 AI 文本生成软件,专为 GGML 和 GGUF 模型设计,灵感来源于原始的 KoboldAI。它是一个单一的、自包含的分布式软件,基于 llama.cpp 构建,并添加了多功能的 KoboldAI API 端点、额外的格式支持、Stable Diffusion 图像生成、语音转文本、向后兼容性以及带有持久故事、编辑工具、保存格式、记忆、世界信息、作者笔记、角色、场景等功能的华丽 UI。
2. 项目快速启动
2.1 下载与安装
首先,从 GitHub 仓库下载最新的 KoboldCpp 可执行文件:
git clone https://github.com/LostRuins/koboldcpp.git
cd koboldcpp
2.2 运行 KoboldCpp
在 Windows 系统上,可以直接运行 koboldcpp.exe:
koboldcpp.exe
在 Linux 系统上,可以使用以下命令运行:
./koboldcpp-linux-x64-cuda1150
2.3 连接到 KoboldCpp
默认情况下,可以通过浏览器访问 http://localhost:5001 连接到 KoboldCpp。
3. 应用案例和最佳实践
3.1 文本生成
KoboldCpp 可以用于生成各种类型的文本,包括故事、对话、文章等。通过调整模型的参数,可以生成不同风格和长度的文本。
3.2 图像生成
KoboldCpp 支持 Stable Diffusion 图像生成,可以加载任何 SD1.5 或 SDXL 的 safetensors 模型,并提供与 A1111 兼容的 API。
3.3 语音转文本
KoboldCpp 还支持 Whisper 模型进行语音转文本,适用于需要将语音转换为文本的应用场景。
4. 典型生态项目
4.1 KoboldAI
KoboldAI 是一个基于 AI 的故事生成客户端,KoboldCpp 是其一个重要的实现,提供了更强大的功能和更好的性能。
4.2 llama.cpp
llama.cpp 是 KoboldCpp 的基础项目,提供了 GGML 模型的核心实现。KoboldCpp 在此基础上进行了扩展和优化。
4.3 Stable Diffusion
Stable Diffusion 是一个用于生成高质量图像的模型,KoboldCpp 集成了 Stable Diffusion,使得用户可以直接在 KoboldCpp 中生成图像。
通过以上步骤,您可以快速上手 KoboldCpp,并利用其强大的功能进行文本和图像生成。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00