KoboldCpp 使用教程
1. 项目介绍
KoboldCpp 是一个易于使用的 AI 文本生成软件,专为 GGML 和 GGUF 模型设计,灵感来源于原始的 KoboldAI。它是一个单一的、自包含的分布式软件,基于 llama.cpp 构建,并添加了多功能的 KoboldAI API 端点、额外的格式支持、Stable Diffusion 图像生成、语音转文本、向后兼容性以及带有持久故事、编辑工具、保存格式、记忆、世界信息、作者笔记、角色、场景等功能的华丽 UI。
2. 项目快速启动
2.1 下载与安装
首先,从 GitHub 仓库下载最新的 KoboldCpp 可执行文件:
git clone https://github.com/LostRuins/koboldcpp.git
cd koboldcpp
2.2 运行 KoboldCpp
在 Windows 系统上,可以直接运行 koboldcpp.exe:
koboldcpp.exe
在 Linux 系统上,可以使用以下命令运行:
./koboldcpp-linux-x64-cuda1150
2.3 连接到 KoboldCpp
默认情况下,可以通过浏览器访问 http://localhost:5001 连接到 KoboldCpp。
3. 应用案例和最佳实践
3.1 文本生成
KoboldCpp 可以用于生成各种类型的文本,包括故事、对话、文章等。通过调整模型的参数,可以生成不同风格和长度的文本。
3.2 图像生成
KoboldCpp 支持 Stable Diffusion 图像生成,可以加载任何 SD1.5 或 SDXL 的 safetensors 模型,并提供与 A1111 兼容的 API。
3.3 语音转文本
KoboldCpp 还支持 Whisper 模型进行语音转文本,适用于需要将语音转换为文本的应用场景。
4. 典型生态项目
4.1 KoboldAI
KoboldAI 是一个基于 AI 的故事生成客户端,KoboldCpp 是其一个重要的实现,提供了更强大的功能和更好的性能。
4.2 llama.cpp
llama.cpp 是 KoboldCpp 的基础项目,提供了 GGML 模型的核心实现。KoboldCpp 在此基础上进行了扩展和优化。
4.3 Stable Diffusion
Stable Diffusion 是一个用于生成高质量图像的模型,KoboldCpp 集成了 Stable Diffusion,使得用户可以直接在 KoboldCpp 中生成图像。
通过以上步骤,您可以快速上手 KoboldCpp,并利用其强大的功能进行文本和图像生成。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00