Guidance项目中使用Azure托管Phi模型生成随机结果的解决方案分析
2025-05-10 22:18:51作者:蔡丛锟
在使用Guidance框架与Azure托管的Phi-3模型交互时,开发者可能会遇到模型生成内容包含预期外随机文本的情况。这种现象并非Guidance框架本身的缺陷,而是源于大语言模型(LLM)的底层工作机制特性。
核心问题本质 大语言模型本质上是基于概率的序列生成器,其工作机制是通过不断预测最可能的下一个token来生成文本。当模型完成用户问题的回答后,如果未设置明确的停止条件,模型会继续生成它认为"合理延续"的内容——这往往表现为新的问答对或相关话题延伸。
典型现象表现
- 回答主问题后附加无关问答(如回答奥巴马生日后追加虚构故事)
- 正则约束变化导致输出差异(宽松正则产生长文本,严格正则得到精确答案)
- 生成内容包含类似对话数据集中的模板结构
技术解决方案
- 停止符控制:通过
stop参数强制终止生成
gen(property, max_tokens=100, stop="\n") # 遇到换行符即停止
- 正则表达式精调:根据输出格式需求设计精确模式
gen(property, regex=r"[A-Z][a-z]+") # 严格匹配首字母大写的单词
- 温度参数调节:降低生成随机性
AzureGuidance(..., temperature=0.3) # 减小采样多样性
最佳实践建议
- 始终为生成操作设置明确的停止条件(换行符/句号等)
- 对结构化输出使用严格的正则约束
- 在系统提示中明确指定响应格式要求
- 分步生成复杂内容而非单次长文本生成
深层原理说明 Phi-3等语言模型在训练过程中接触了大量对话数据,这些数据通常采用"问题-回答"交替的模式。当模型完成当前问题的回答后,基于训练数据的统计规律,自然倾向于继续生成新的问答对。这种现象在未严格约束的生成场景中尤为明显。
进阶技巧 对于需要复杂交互的场景,建议采用分步生成策略:
- 首先生成核心答案
- 单独生成可能的后续内容
- 通过程序逻辑筛选有效部分
这种方案既保持了生成的灵活性,又能有效控制输出质量。Guidance框架的链式调用特性非常适合实现这种分步控制策略。
通过理解语言模型的工作原理并合理设置生成参数,开发者可以充分发挥Azure托管模型的潜力,同时确保生成内容的精确性和可用性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669