推荐使用 Randen:高效、安全的随机数生成器
项目介绍
Randen 是一款高性能、攻击抗性随机数生成器,它利用了硬件加速的 AES 算法和大型 Feistel 混乱函数,提供了一种默认安全的解决方案,而不增加过多的 CPU 开销。与现有流行随机数生成器如 MT19937、pcg64_c32、Philox 和 ChaCha8 相比,Randen 在实际应用中的表现更佳。
技术分析
Randen 的设计基于三种现有组件:
-
Reverie:一种类似于海绵结构的生成器,需要一个密码学上的混淆函数。它可以仅通过一次混淆函数调用来实现回溯抵抗力。
-
Simpira v2:通过改进的 Generalized Feistel 网络构建了多于 1024 位的混淆函数,提高了扩散速度并减少了对分片双连攻击的脆弱性。
-
2048 位混淆函数的扩展:借鉴了“新扩散性质标准”中的方法,实现了更高效的大型混淆网络。
这三者结合,将更大规模的 Simpira 类似混淆函数用于 Reverie,以增强安全性并提高性能。
应用场景
Randen 可广泛应用于需要高质量随机数的领域,包括但不限于:
- 加密算法:如在 TLS 或 SSH 中生成非对称密钥。
- 数据模拟和统计分析。
- 游戏开发中的随机事件生成。
- 机器学习中的权重初始化。
性能测试
Randen 在多种架构(如 x86、POWER 8 和 ARM64)上进行了微基准和真实世界基准测试。结果显示,在 X86 平台上,无论是以随机字节生成的循环计时还是在实际的 reservoir-sampling 测试中,Randen 都显著优于其他流行的随机数生成器,包括 pcg64_c32 和 mt19937_64。
安全保障
Randen 提供了不可区分性为随机且具有回溯抵抗力的安全保证。其详细的安全性和性能评估可在相关论文 "Randen - 快速回溯抵抗随机生成器,带有 AES+Feistel+Reverie" 中找到。
使用指南
只需执行 make && bin/randen_benchmark 即可运行示例程序进行基准测试。请注意,代码依赖于编译器优化,因此编译配置可能会影响性能。
第三方实现与绑定
该项目也得到了第三方开发者的支持,提供了如 C 语言等不同语言的实现或绑定。有兴趣的开发者可以参与到这个社区,共同推进 Randen 的发展。
结语
虽然 Randen 还不是一个官方的 Google 产品,但它已经在安全性和性能上树立了一个新的标杆。如果你正在寻找一款快速、可靠的随机数生成器,那么 Randen 绝对值得你考虑。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00