DeepSeek-V3模型参数规模解析:37B激活参数的计算方法
2025-04-28 02:48:59作者:戚魁泉Nursing
DeepSeek-V3作为一款强大的混合专家(MoE)语言模型,其技术报告中提到总参数规模达到671B,但每个token仅激活37B参数。这一设计在保持模型强大能力的同时,显著提升了推理效率。本文将详细解析37B激活参数的计算方法,帮助读者理解MoE模型的参数结构。
模型架构概述
DeepSeek-V3采用混合专家架构,主要包含以下几个关键组件:
- 嵌入层(Embedding Layer)
- 多层Transformer结构
- 多头注意力机制(MLA)
- 混合专家层(MoE)
- 输出层(Output Layer)
参数计算详解
1. 嵌入层参数
嵌入层负责将输入token映射到隐藏空间:
- 词汇表大小(vocab_size): 129,280
- 隐藏层维度(hidden_size): 7,168
- 参数规模: 129280 × 7168 ≈ 0.9B
2. Transformer隐藏层参数
多头注意力机制(MLA)
MLA层采用LoRA(Low-Rank Adaptation)技术降低参数规模:
-
键值(KV)投影:
- 下投影矩阵: 7168 × 512 ≈ 3.7M
- 键上投影矩阵: 512 × 128 × 128 ≈ 8.4M
- 键RoPE矩阵: 7168 × 64 ≈ 0.5M
- 值上投影矩阵: 512 × 128 × 128 ≈ 8.4M
-
查询(Q)投影:
- 下投影矩阵: 7168 × 1536 ≈ 11.0M
- 查询上投影矩阵: 1536 × 128 × 128 ≈ 25.2M
- 查询RoPE矩阵: 1536 × 64 × 128 ≈ 12.6M
-
输出投影:
- 输出矩阵: 7168 × 128 × 128 ≈ 117.4M
-
归一化层:
- 两个RMSNorm层: 7168 × 2 ≈ 14K
总MLA参数: 61层 × (3.7M + 8.4M + 0.5M + 8.4M + 11.0M + 25.2M + 12.6M + 117.4M + 14K) ≈ 11.4B
混合专家层(MoE)
MoE层是参数规模的主要来源:
-
路由层(Router):
- 前三层不使用路由
- 参数规模: 7168 × 256 × 58 ≈ 106.4M
-
专家网络(Experts):
- 每个专家包含3层前馈网络
- 中间层维度(moe_intermediate_size): 2,048
- 每个token激活8个路由专家和1个共享专家
- 参数规模: 3 × 2048 × 7168 × 61 × 9 ≈ 24.1B
3. 输出层参数
输出层将隐藏状态映射回词汇空间:
- 参数规模: 129280 × 7168 ≈ 0.9B
总激活参数计算
将所有激活部分相加:
- 嵌入层: 0.9B
- MLA层: 11.4B
- MoE层: 24.1B + 0.1B
- 输出层: 0.9B
- 总计: ≈37.5B
设计优势分析
DeepSeek-V3的37B激活参数设计体现了几个关键优势:
- 计算效率:相比全参数激活,仅激活5.5%的参数(37B/671B),大幅降低计算量
- 专家利用率:每个token仅激活8个专家,实现计算资源的动态分配
- 参数共享:共享专家机制确保基础能力的稳定性
- LoRA技术:在注意力机制中应用低秩适应,有效控制参数规模
这种设计在保持模型强大表达能力的同时,显著提升了推理效率,是MoE架构在实际应用中的成功实践。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178