DeepSeek-V3模型参数规模解析:37B激活参数的计算方法
2025-04-28 22:11:21作者:戚魁泉Nursing
DeepSeek-V3作为一款强大的混合专家(MoE)语言模型,其技术报告中提到总参数规模达到671B,但每个token仅激活37B参数。这一设计在保持模型强大能力的同时,显著提升了推理效率。本文将详细解析37B激活参数的计算方法,帮助读者理解MoE模型的参数结构。
模型架构概述
DeepSeek-V3采用混合专家架构,主要包含以下几个关键组件:
- 嵌入层(Embedding Layer)
- 多层Transformer结构
- 多头注意力机制(MLA)
- 混合专家层(MoE)
- 输出层(Output Layer)
参数计算详解
1. 嵌入层参数
嵌入层负责将输入token映射到隐藏空间:
- 词汇表大小(vocab_size): 129,280
- 隐藏层维度(hidden_size): 7,168
- 参数规模: 129280 × 7168 ≈ 0.9B
2. Transformer隐藏层参数
多头注意力机制(MLA)
MLA层采用LoRA(Low-Rank Adaptation)技术降低参数规模:
-
键值(KV)投影:
- 下投影矩阵: 7168 × 512 ≈ 3.7M
- 键上投影矩阵: 512 × 128 × 128 ≈ 8.4M
- 键RoPE矩阵: 7168 × 64 ≈ 0.5M
- 值上投影矩阵: 512 × 128 × 128 ≈ 8.4M
-
查询(Q)投影:
- 下投影矩阵: 7168 × 1536 ≈ 11.0M
- 查询上投影矩阵: 1536 × 128 × 128 ≈ 25.2M
- 查询RoPE矩阵: 1536 × 64 × 128 ≈ 12.6M
-
输出投影:
- 输出矩阵: 7168 × 128 × 128 ≈ 117.4M
-
归一化层:
- 两个RMSNorm层: 7168 × 2 ≈ 14K
总MLA参数: 61层 × (3.7M + 8.4M + 0.5M + 8.4M + 11.0M + 25.2M + 12.6M + 117.4M + 14K) ≈ 11.4B
混合专家层(MoE)
MoE层是参数规模的主要来源:
-
路由层(Router):
- 前三层不使用路由
- 参数规模: 7168 × 256 × 58 ≈ 106.4M
-
专家网络(Experts):
- 每个专家包含3层前馈网络
- 中间层维度(moe_intermediate_size): 2,048
- 每个token激活8个路由专家和1个共享专家
- 参数规模: 3 × 2048 × 7168 × 61 × 9 ≈ 24.1B
3. 输出层参数
输出层将隐藏状态映射回词汇空间:
- 参数规模: 129280 × 7168 ≈ 0.9B
总激活参数计算
将所有激活部分相加:
- 嵌入层: 0.9B
- MLA层: 11.4B
- MoE层: 24.1B + 0.1B
- 输出层: 0.9B
- 总计: ≈37.5B
设计优势分析
DeepSeek-V3的37B激活参数设计体现了几个关键优势:
- 计算效率:相比全参数激活,仅激活5.5%的参数(37B/671B),大幅降低计算量
- 专家利用率:每个token仅激活8个专家,实现计算资源的动态分配
- 参数共享:共享专家机制确保基础能力的稳定性
- LoRA技术:在注意力机制中应用低秩适应,有效控制参数规模
这种设计在保持模型强大表达能力的同时,显著提升了推理效率,是MoE架构在实际应用中的成功实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118