DeepSeek-V3模型参数规模解析:37B激活参数的计算方法
2025-04-28 17:46:28作者:戚魁泉Nursing
DeepSeek-V3作为一款强大的混合专家(MoE)语言模型,其技术报告中提到总参数规模达到671B,但每个token仅激活37B参数。这一设计在保持模型强大能力的同时,显著提升了推理效率。本文将详细解析37B激活参数的计算方法,帮助读者理解MoE模型的参数结构。
模型架构概述
DeepSeek-V3采用混合专家架构,主要包含以下几个关键组件:
- 嵌入层(Embedding Layer)
- 多层Transformer结构
- 多头注意力机制(MLA)
- 混合专家层(MoE)
- 输出层(Output Layer)
参数计算详解
1. 嵌入层参数
嵌入层负责将输入token映射到隐藏空间:
- 词汇表大小(vocab_size): 129,280
- 隐藏层维度(hidden_size): 7,168
- 参数规模: 129280 × 7168 ≈ 0.9B
2. Transformer隐藏层参数
多头注意力机制(MLA)
MLA层采用LoRA(Low-Rank Adaptation)技术降低参数规模:
-
键值(KV)投影:
- 下投影矩阵: 7168 × 512 ≈ 3.7M
- 键上投影矩阵: 512 × 128 × 128 ≈ 8.4M
- 键RoPE矩阵: 7168 × 64 ≈ 0.5M
- 值上投影矩阵: 512 × 128 × 128 ≈ 8.4M
-
查询(Q)投影:
- 下投影矩阵: 7168 × 1536 ≈ 11.0M
- 查询上投影矩阵: 1536 × 128 × 128 ≈ 25.2M
- 查询RoPE矩阵: 1536 × 64 × 128 ≈ 12.6M
-
输出投影:
- 输出矩阵: 7168 × 128 × 128 ≈ 117.4M
-
归一化层:
- 两个RMSNorm层: 7168 × 2 ≈ 14K
总MLA参数: 61层 × (3.7M + 8.4M + 0.5M + 8.4M + 11.0M + 25.2M + 12.6M + 117.4M + 14K) ≈ 11.4B
混合专家层(MoE)
MoE层是参数规模的主要来源:
-
路由层(Router):
- 前三层不使用路由
- 参数规模: 7168 × 256 × 58 ≈ 106.4M
-
专家网络(Experts):
- 每个专家包含3层前馈网络
- 中间层维度(moe_intermediate_size): 2,048
- 每个token激活8个路由专家和1个共享专家
- 参数规模: 3 × 2048 × 7168 × 61 × 9 ≈ 24.1B
3. 输出层参数
输出层将隐藏状态映射回词汇空间:
- 参数规模: 129280 × 7168 ≈ 0.9B
总激活参数计算
将所有激活部分相加:
- 嵌入层: 0.9B
- MLA层: 11.4B
- MoE层: 24.1B + 0.1B
- 输出层: 0.9B
- 总计: ≈37.5B
设计优势分析
DeepSeek-V3的37B激活参数设计体现了几个关键优势:
- 计算效率:相比全参数激活,仅激活5.5%的参数(37B/671B),大幅降低计算量
- 专家利用率:每个token仅激活8个专家,实现计算资源的动态分配
- 参数共享:共享专家机制确保基础能力的稳定性
- LoRA技术:在注意力机制中应用低秩适应,有效控制参数规模
这种设计在保持模型强大表达能力的同时,显著提升了推理效率,是MoE架构在实际应用中的成功实践。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217