DeepSeek-V3模型参数规模解析:37B激活参数的计算方法
2025-04-28 00:01:32作者:戚魁泉Nursing
DeepSeek-V3作为一款强大的混合专家(MoE)语言模型,其技术报告中提到总参数规模达到671B,但每个token仅激活37B参数。这一设计在保持模型强大能力的同时,显著提升了推理效率。本文将详细解析37B激活参数的计算方法,帮助读者理解MoE模型的参数结构。
模型架构概述
DeepSeek-V3采用混合专家架构,主要包含以下几个关键组件:
- 嵌入层(Embedding Layer)
- 多层Transformer结构
- 多头注意力机制(MLA)
- 混合专家层(MoE)
- 输出层(Output Layer)
参数计算详解
1. 嵌入层参数
嵌入层负责将输入token映射到隐藏空间:
- 词汇表大小(vocab_size): 129,280
- 隐藏层维度(hidden_size): 7,168
- 参数规模: 129280 × 7168 ≈ 0.9B
2. Transformer隐藏层参数
多头注意力机制(MLA)
MLA层采用LoRA(Low-Rank Adaptation)技术降低参数规模:
-
键值(KV)投影:
- 下投影矩阵: 7168 × 512 ≈ 3.7M
- 键上投影矩阵: 512 × 128 × 128 ≈ 8.4M
- 键RoPE矩阵: 7168 × 64 ≈ 0.5M
- 值上投影矩阵: 512 × 128 × 128 ≈ 8.4M
-
查询(Q)投影:
- 下投影矩阵: 7168 × 1536 ≈ 11.0M
- 查询上投影矩阵: 1536 × 128 × 128 ≈ 25.2M
- 查询RoPE矩阵: 1536 × 64 × 128 ≈ 12.6M
-
输出投影:
- 输出矩阵: 7168 × 128 × 128 ≈ 117.4M
-
归一化层:
- 两个RMSNorm层: 7168 × 2 ≈ 14K
总MLA参数: 61层 × (3.7M + 8.4M + 0.5M + 8.4M + 11.0M + 25.2M + 12.6M + 117.4M + 14K) ≈ 11.4B
混合专家层(MoE)
MoE层是参数规模的主要来源:
-
路由层(Router):
- 前三层不使用路由
- 参数规模: 7168 × 256 × 58 ≈ 106.4M
-
专家网络(Experts):
- 每个专家包含3层前馈网络
- 中间层维度(moe_intermediate_size): 2,048
- 每个token激活8个路由专家和1个共享专家
- 参数规模: 3 × 2048 × 7168 × 61 × 9 ≈ 24.1B
3. 输出层参数
输出层将隐藏状态映射回词汇空间:
- 参数规模: 129280 × 7168 ≈ 0.9B
总激活参数计算
将所有激活部分相加:
- 嵌入层: 0.9B
- MLA层: 11.4B
- MoE层: 24.1B + 0.1B
- 输出层: 0.9B
- 总计: ≈37.5B
设计优势分析
DeepSeek-V3的37B激活参数设计体现了几个关键优势:
- 计算效率:相比全参数激活,仅激活5.5%的参数(37B/671B),大幅降低计算量
- 专家利用率:每个token仅激活8个专家,实现计算资源的动态分配
- 参数共享:共享专家机制确保基础能力的稳定性
- LoRA技术:在注意力机制中应用低秩适应,有效控制参数规模
这种设计在保持模型强大表达能力的同时,显著提升了推理效率,是MoE架构在实际应用中的成功实践。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8