Slang着色器语言2025.10.1版本技术解析
Slang是一个现代化的着色器编程语言和编译器工具链,旨在为图形和计算着色器开发提供更高效、更灵活的解决方案。作为HLSL的超集,Slang不仅保留了与现有HLSL代码的兼容性,还引入了许多创新特性来简化着色器开发流程。
版本核心改进
本次2025.10.1版本带来了多项重要更新,主要聚焦在编译器功能增强、错误修复和性能优化三个方面。
编译器功能增强
-
内存映射二进制序列化格式:新增了一种高效的二进制序列化机制,可以显著提升大型着色器项目的加载和处理速度。这种格式特别适合需要频繁加载着色器的实时渲染场景。
-
LSS(光线追踪着色器)功能增强:完善了对光线追踪着色器的支持,包括新增了LSS相关内置函数,并启用了LSS命中对象测试功能,为开发者提供了更完整的硬件加速光线追踪支持。
-
协作矩阵运算优化:改进了协作矩阵乘法(OpCooperativeVectorMatrixMulNV)的实现,现在会正确使用MatrixResultSignedComponents标志,确保矩阵运算结果的符号处理符合预期。
重要错误修复
-
接口声明中的变量初始化修复:解决了接口声明(InterfaceDecl)内部变量声明(VarDecl)错误包含初始化表达式的问题,避免了潜在的编译错误。
-
SPIR-V特殊常量操作修复:修正了SPIR-V后端在处理OpSpecConstantOp指令时的代码生成问题,确保特殊常量操作能正确编译。
-
下标操作符类型检查:增加了对下标操作符返回类型的严格检查,防止类型不匹配导致的运行时错误。
默认行为变更
-
描述符绑定默认行为变更:将默认描述符绑定类型改为VkMutable,提供了更大的灵活性,允许着色器在运行时动态选择绑定资源。
-
变量需求检查:新增了对变量必须性(must-have)的编译时检查,确保关键变量不会被意外省略。
开发环境支持
-
测试工具增强:为slang-test工具新增了-enable-debug-layers选项,方便开发者启用调试层进行更深入的错误分析。
-
构建系统更新:移除了对dxc-fetch的临时解决方案,简化了构建流程。同时更新了持续集成系统,将Ubuntu运行环境升级到22.04版本。
-
跨平台支持:提供了针对Linux(aarch64/x86_64)、macOS(aarch64/x86_64)和Windows(aarch64/x86_64)的完整预编译包,包括调试符号文件,方便各平台开发者使用。
语言特性改进
-
元组语法支持:增强了对元组类型的语法支持,使数据结构的表达更加灵活。
-
协作矩阵填充优化:简化了coopvec::fill操作的实现表达式,提高了生成代码的效率。
-
类型系统强化:改进了类型可用性检查(CheckUsableType)的实现,确保类型系统更加健壮。
总结
Slang 2025.10.1版本在保持稳定性的同时,通过多项功能增强和错误修复,进一步提升了作为现代着色器开发工具链的竞争力。特别是对光线追踪和协作矩阵运算等前沿图形技术的支持,使其成为开发高性能图形应用的理想选择。跨平台支持的完善也让开发者能够在不同硬件环境下获得一致的开发体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00