O3DE项目中wstring::format函数参数类型不匹配导致缓冲区溢出问题分析
2025-05-28 05:44:10作者:齐添朝
问题背景
在O3DE开源游戏引擎的开发过程中,开发团队发现了一个由字符串类型不匹配导致的缓冲区溢出问题。该问题出现在性能分析器(Profiler)模块中,具体表现为使用wstring::format()函数时传入了非宽字符(non-wstring)的char*类型参数。
问题详情
性能分析器模块在设计时采用了宽字符(wstring)接口,这意味着其API期望接收宽字符数组作为输入参数。然而在实际使用中,特别是在AZ_PROFILE_DATAPOINT宏的实现中,开发人员错误地将常规的char*字符串(UTF-8编码)直接传递给了wstring::format()函数。
典型的错误示例如下:
AZ_PROFILE_DATAPOINT(
AzCore,
(value ? 1 : 0),
AZStd::wstring::format(L"Streamer/%.*s/%.*s",
aznumeric_cast<int>(stat.GetOwner().length()),
stat.GetOwner().data(),
aznumeric_cast<int>(stat.GetName().length()),
stat.GetName().data()).data());
这段代码的问题在于:
- 使用
wstring::format函数时,格式字符串前缀是L(宽字符) - 但实际传入的
stat.GetOwner().data()和stat.GetName().data()返回的是常规的char*类型数据 - 标准库在处理这种类型不匹配时会产生未定义行为,特别是会错误地将输入字符串当作宽字符数组处理
技术影响
这种类型不匹配会导致以下严重后果:
- 内存安全问题:由于宽字符通常占用2或4个字节,而常规字符只占1个字节,错误的类型解释会导致缓冲区边界计算错误,引发缓冲区溢出
- 字符串解析错误:宽字符处理函数会错误地解释常规字符数据,可能导致字符串截断或包含无效字符
- 跨平台兼容性问题:O3DE引擎设计为跨平台运行,而不同平台对宽字符的处理可能存在差异
解决方案分析
针对这个问题,开发团队考虑了两种主要解决方案:
方案一:统一使用宽字符存储
优点:
- 修改范围相对较小,主要集中在性能分析器相关代码
- 与现有的Windows PIX分析工具兼容性更好
- 避免了实时性能分析时的字符串转换开销
缺点:
- 与引擎其他部分使用UTF-8编码的惯例不一致
- 增加了内存使用量(宽字符通常占用更多空间)
- 非Windows平台可能不需要宽字符
方案二:修改性能分析器API使用常规字符
优点:
- 与引擎整体编码风格保持一致
- 减少内存使用
- 非Windows平台无需转换
缺点:
- 需要修改API接口,影响范围较大
- Windows平台需要额外的转换层或缓存机制
- 可能引入性能开销
最终解决方案
经过权衡,开发团队选择了方案一作为临时解决方案,主要原因包括:
- 修改范围可控,风险较小
- 保持了与现有性能分析工具的兼容性
- 避免了在性能关键路径上引入额外的字符串转换开销
具体实现方式是将Statistic类中的字符串存储改为宽字符格式,确保传递给wstring::format的参数类型匹配。
经验总结
这个案例为开发者提供了几个重要的经验教训:
- 类型安全至关重要:特别是在处理字符串时,必须确保类型一致性
- 跨平台开发注意事项:字符编码处理在不同平台上可能有不同要求
- 性能关键代码的特殊考量:在性能敏感区域,需要权衡正确性与性能优化的关系
- 静态分析工具的价值:这个问题是通过ASAN(Address Sanitizer)工具发现的,凸显了静态分析在项目质量保障中的重要性
这个问题已在O3DE的最新开发分支中得到修复,并将包含在未来的2025.x版本中。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
205
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.62 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
291
103
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
仓颉编译器源码及 cjdb 调试工具。
C++
128
858