Figure Generator:高效生成专业图表的利器
2024-10-10 21:37:15作者:宗隆裙
在科研和工程领域,图表的生成和分析是不可或缺的一部分。无论是用于论文发表、技术报告还是项目展示,高质量的图表都能极大地提升内容的可读性和专业性。今天,我们要介绍的是一款强大的开源工具——Figure Generator,它能够帮助你快速生成PDF、HTML和PPTX格式的图表,并且支持多种图像分析功能。
项目介绍
Figure Generator 是一款专为科研和工程领域设计的图表生成工具。它不仅能够生成高质量的图表,还提供了丰富的图像分析功能,帮助用户快速比较和分析图像。无论是渲染研究中的图像对比,还是数据可视化中的图表生成,Figure Generator 都能轻松应对。
项目技术分析
Figure Generator 基于 Python 3.6+ 开发,依赖于 opencv-python 和 simpleimageio 等库。它支持多种图表生成后端,包括:
- PDF 后端:需要
pdflatex及其相关包(如tikz,calc,standalone,fontenc,libertine,inputenc)。 - PPTX 后端:依赖
python-pptx。 - PDF 图像嵌入:需要
PyPDF2和pdf2image(后者依赖poppler)。
通过这些依赖库,Figure Generator 能够灵活地生成不同格式的图表,并且支持图像的数学分析,如错误度量等。
项目及技术应用场景
Figure Generator 的应用场景非常广泛,尤其适合以下领域:
- 渲染研究:在渲染研究中,经常需要生成大量的对比图表。Figure Generator 支持网格布局和简单的线图绘制,能够快速生成符合要求的图表。
- 数据可视化:无论是科研数据还是工程数据,Figure Generator 都能帮助用户生成清晰、专业的图表,提升数据的可视化效果。
- 技术报告和演示文稿:在撰写技术报告或制作演示文稿时,Figure Generator 能够快速生成高质量的图表,提升文档的专业性。
项目特点
Figure Generator 具有以下显著特点:
- 多格式支持:支持生成 PDF、HTML 和 PPTX 格式的图表,满足不同场景的需求。
- 图像分析功能:提供多种错误度量,不仅支持视觉上的图像比较,还能进行数学上的分析。
- 灵活的模板系统:内置多种图表模板,用户可以根据需要进行自定义修改,快速生成符合要求的图表。
- 易于使用:通过简单的 Python 代码,用户可以快速上手,生成复杂的图表。
快速开始
你可以通过以下命令快速安装 Figure Generator 及其依赖:
python -m pip install figuregen
以下是一个简单的示例代码,展示如何使用内置模板生成图表:
import simpleimageio as sio
import figuregen
from figuregen.util.templates import CropComparison
from figuregen.util.image import Cropbox
figure = CropComparison(
reference_image=sio.read("images/pool/pool.exr"),
method_images=[
sio.read("images/pool/pool-60s-path.exr"),
sio.read("images/pool/pool-60s-upsmcmc.exr"),
sio.read("images/pool/pool-60s-radiance.exr"),
sio.read("images/pool/pool-60s-full.exr"),
],
crops=[
Cropbox(top=100, left=200, height=96, width=128, scale=5),
Cropbox(top=100, left=450, height=96, width=128, scale=5),
],
scene_name="Pool",
method_names=["Reference", "Path Tracer", "UPS+MCMC", "Radiance-based", "Ours"]
)
# 生成图表
figuregen.figure([figure.figure_row], width_cm=17.7, filename="pool_with_template.pdf")
生成的图表效果如下:

更多示例
Figure Generator 提供了丰富的示例,帮助用户快速上手。以下是一些示例图表:
垂直堆叠
分割对比
裁剪对比
线图
带标题、标签、标记和边框的网格
无论你是科研人员、工程师还是数据分析师,Figure Generator 都能帮助你快速生成高质量的图表,提升工作效率。快来试试吧!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
303
Ascend Extension for PyTorch
Python
107
138
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
601
166
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
299
39




