Seurat项目中FindNeighbors函数在不同Assay下的行为差异分析
2025-07-02 06:45:56作者:凌朦慧Richard
问题背景
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。其中FindNeighbors函数用于构建细胞间的K近邻图,是后续聚类分析的基础。根据官方文档描述,FindNeighbors函数应该仅依赖于输入的降维嵌入数据(embeddings),而与使用的assay类型无关。
现象描述
用户在使用Seurat v5时发现了一个异常现象:当使用相同的harmony降维嵌入数据,但设置不同的默认assay(RNA或SCT)时,FindNeighbors函数产生了不同的结果。具体表现为:
- 直接使用原始对象的harmony嵌入时,RNA和SCT assay得到了不同的聚类结果
- 当显式创建相同的harmony嵌入对象后,两种assay得到了相同的聚类结果
技术分析
FindNeighbors的工作原理
FindNeighbors函数的核心功能是基于降维空间中的细胞坐标计算细胞间的相似性,构建K近邻图。理论上,只要输入的嵌入数据相同,结果应该一致。
潜在问题点
- assay关联性:虽然文档说明FindNeighbors仅使用嵌入数据,但实际实现中可能与默认assay存在隐式关联
- 图命名问题:不同assay下生成的图可能被存储在不同的图名中,导致后续FindClusters使用了不同的图
- 对象状态污染:原始对象中可能包含其他隐藏的图结构影响了结果
解决方案验证
通过以下方法可以确保结果一致性:
- 显式指定graph.name参数,确保使用正确的图结构
- 显式创建相同的嵌入对象,避免原始对象中的隐藏状态影响
- 检查对象中所有图结构,确保没有意外的图存在
最佳实践建议
- 显式指定参数:在使用FindClusters时,始终显式指定graph.name参数
- 对象清理:在进行关键分析前,可以创建新的对象或清理不需要的图结构
- 结果验证:比较不同条件下的图结构,确保一致性
- 版本注意:不同Seurat版本可能有细微行为差异,需注意版本兼容性
总结
虽然Seurat的FindNeighbors函数理论上应独立于assay类型,但在实际使用中仍需注意参数设置和对象状态管理。通过显式指定关键参数和验证中间结果,可以确保分析流程的可靠性和可重复性。这一发现也提醒我们,在复杂的数据分析流程中,文档描述与实际实现可能存在细微差异,需要通过实验验证来确保理解正确。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136