uiautomator2滑动性能问题分析与解决
问题背景
在使用uiautomator2进行Android自动化测试时,开发者发现从3.0.11版本开始,swipe_ext
方法的滑动操作性能明显下降。具体表现为滑动动画卡顿,每次滑动耗时从原来的1秒以内增加到3秒左右。这个问题在Redmi note 11t pro(MIUI 14.0.7系统)上尤为明显。
问题表现
通过对比测试不同版本的uiautomator2,可以观察到以下现象:
- 3.0.8版本和3.0.5版本:滑动流畅,每次滑动耗时在1秒以内
- 3.0.11版本:滑动卡顿明显,每次滑动耗时约3秒
测试代码非常简单,就是连续执行向上滑动操作并打印时间戳:
import uiautomator2 as u2
from datetime import datetime
d = u2.connect('设备序列号')
max_scroll = 10
for i in range(max_scroll):
print(datetime.now())
d.swipe_ext("up", scale=0.9)
问题原因分析
根据项目维护者的反馈,这个问题可能与localhost解析为IPv6地址导致的延迟有关。在计算机网络中,当系统尝试解析localhost时,如果优先使用IPv6地址而网络环境对IPv6支持不佳,可能会导致额外的延迟。
具体到uiautomator2的实现,swipe_ext
方法底层需要通过ADB与设备通信,如果在这个过程中涉及localhost的解析,且解析过程出现延迟,就会影响整个滑动操作的执行效率。
解决方案
项目维护者建议升级到uiautomator2 3.0.13版本。这个版本可能已经修复了localhost解析相关的问题,或者优化了网络通信的实现方式。
实际测试表明,升级到3.0.13版本后,滑动操作的性能确实得到了明显改善,恢复了原有的流畅度。
深入理解
对于Android自动化测试工具来说,滑动操作的性能至关重要,因为它直接影响到:
- 测试用例的执行速度
- 测试结果的准确性(某些情况下滑动速度会影响UI元素的加载)
- 测试过程的观感体验
uiautomator2的swipe_ext
方法相比基础的swipe方法提供了更多参数控制,如scale参数可以调整滑动的幅度。这种增强的方法在底层实现上可能涉及更多的计算和通信过程,因此对性能变化更为敏感。
最佳实践建议
- 版本选择:在生产环境中使用经过充分测试的稳定版本,避免盲目升级到最新版
- 性能监控:在测试框架中加入关键操作的耗时统计,便于及时发现性能退化
- 环境检查:当遇到网络通信相关问题时,检查设备的IPv6/IPv4设置
- 问题追踪:关注开源项目的issue列表,了解已知问题和解决方案
总结
uiautomator2作为Android自动化测试的重要工具,其性能表现直接影响测试效率。3.0.11版本中出现的滑动性能问题提醒我们,即使是成熟的工具也可能因为看似微小的改动(如网络解析策略)而产生显著影响。及时更新到修复版本(如3.0.13)是解决这类问题的有效方法,同时也应该建立完善的性能监控机制,确保测试工具的稳定运行。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









