BoTorch项目中多保真度下界最大价值熵获取函数的缺陷分析
2025-06-25 11:42:21作者:瞿蔚英Wynne
问题概述
在BoTorch深度学习框架中,研究人员发现了一个关于多保真度优化的重要缺陷。具体而言,当使用qMultiFidelityLowerBoundMaxValueEntropy获取函数时,如果存在待评估点(X_pending),该函数会意外失败。这一现象在使用SingleTaskMultiFidelityGP模型时尤为明显,而标准的多保真度最大价值熵获取函数(qMultiFidelityMaxValueEntropy)则表现正常。
技术背景
多保真度优化是贝叶斯优化领域的重要技术,它允许算法同时考虑不同保真度(精度)级别的评估数据。BoTorch框架提供了两种相关的获取函数:
qMultiFidelityMaxValueEntropy- 标准的多保真度最大价值熵方法qMultiFidelityLowerBoundMaxValueEntropy- 基于下界近似的高效变体
这两种方法都设计用于处理批量评估(q>1)和待评估点(X_pending),但在实际实现中,下界变体出现了兼容性问题。
问题表现
当尝试使用qMultiFidelityLowerBoundMaxValueEntropy获取函数进行优化时,如果设置了待评估点,系统会抛出形状不匹配的运行时错误。错误发生在尝试广播张量形状时,表明在内部计算过程中存在维度处理不当的问题。
根本原因分析
经过深入调查,发现问题根源在于:
qMultiFidelityLowerBoundMaxValueEntropy继承自两个基类功能,在整合过程中对张量形状的处理不够完善- 当存在待评估点时,系统需要同时处理当前候选点和待评估点的组合形状,而现有实现未能正确处理这种情况
- 虽然文档表明支持q>1和X_pending,但实际实现中存在隐含的q=1假设
解决方案
目前采取的临时解决方案是:
- 移除了
X_pending参数支持,避免错误发生 - 添加了明确的限制说明
长期解决方案需要:
- 重新设计张量形状处理逻辑
- 确保与基类功能的完全兼容
- 完善测试用例,覆盖各种参数组合
影响范围
这一问题主要影响以下使用场景:
- 需要同时进行多保真度优化和异步评估的应用
- 使用下界近似方法以提高计算效率的场景
- 批量评估(q>1)与待评估点组合使用的情况
最佳实践建议
在问题完全修复前,建议用户:
- 对于需要待评估点的场景,暂时使用标准的多保真度最大价值熵方法
- 如果必须使用下界变体,确保不设置待评估点
- 密切关注BoTorch的版本更新,及时获取修复补丁
总结
这一缺陷揭示了贝叶斯优化框架中复杂获取函数实现面临的挑战,特别是在组合多种高级功能时。BoTorch团队已经意识到这一问题,并正在积极寻求长期解决方案。对于用户而言,理解这些限制有助于更好地规划实验设计和算法选择。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
632
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
724
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460