MedicalGPT项目中Yi-6B模型全参数微调时Loss归零问题分析
2025-06-18 20:42:26作者:盛欣凯Ernestine
在使用MedicalGPT项目对Yi-6B大语言模型进行全参数监督微调(SFT)时,开发者遇到了一个典型的技术问题:训练过程中损失函数(Loss)突然归零。这种情况在深度学习模型训练中并不罕见,但需要深入分析其成因和解决方案。
问题现象
在配置了7张GPU卡的环境下,使用DeepSpeed进行分布式训练时,Yi-6B模型的损失值迅速降为零。具体配置包括:
- 使用bfloat16混合精度训练
- DeepSpeed Zero Stage 2优化策略
- 全参数微调(未使用PEFT参数高效微调技术)
- 学习率设置为2e-6
根本原因分析
经过技术排查,这个问题主要与DeepSpeed版本和配置相关。最新版本的DeepSpeed(0.12.5)在某些情况下会导致梯度计算异常,特别是在使用Zero Stage 2优化策略时。这种优化策略虽然能有效减少显存占用,但在特定版本中可能引发梯度消失或计算错误。
解决方案
开发者通过以下步骤成功解决了该问题:
- 降级DeepSpeed版本:将DeepSpeed从0.12.5降级到0.11.1版本
- 检查混合精度配置:确认实际使用的是bfloat16而非fp16
- 简化训练配置:在问题排查阶段,先不使用DeepSpeed进行测试
技术建议
对于大模型全参数微调,建议开发者注意以下几点:
- 版本兼容性:保持框架、优化库和硬件驱动的版本兼容性
- 梯度检查:在训练初期加入梯度检查机制,防止梯度消失或爆炸
- 逐步验证:先在小规模数据和简单配置下验证训练流程,再扩展到全量数据
- 监控指标:除了Loss值,还应关注其他训练指标如梯度范数、参数更新量等
总结
大模型训练过程中的异常现象往往与分布式训练框架的版本和配置密切相关。遇到Loss归零问题时,开发者应首先考虑梯度计算和参数更新的正确性,通过版本调整和配置简化来定位问题根源。MedicalGPT项目中针对Yi-6B模型的这一经验,为类似的大模型微调任务提供了有价值的参考。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660