NVlabs/handover-sim2real项目训练流程深度解析
2025-07-08 15:19:12作者:尤峻淳Whitney
项目背景与概述
NVlabs/handover-sim2real项目专注于解决机器人交接任务中的仿真到现实(simulation-to-real)迁移问题。该项目通过深度强化学习训练策略,使机器人能够高效、安全地完成物品交接任务。训练脚本train.py是该项目的核心训练实现,包含了完整的训练流程和算法细节。
训练流程架构
训练脚本采用了典型的强化学习训练框架,包含以下几个关键组件:
- 环境封装:HandoverBenchmarkWrapper提供标准化的交接任务环境
- 策略网络:HandoverSim2RealPolicy实现核心决策逻辑
- 经验回放:ReplayMemoryWrapper管理训练数据
- 训练器:Trainer/TrainerRemote协调训练过程
核心训练逻辑解析
1. 参数配置与初始化
训练脚本首先处理命令行参数和配置文件:
def parse_args():
parser = argparse.ArgumentParser(description="Train.")
parser.add_argument("--cfg-file", help="path to config file")
parser.add_argument("--seed", default=0, type=int, help="random seed")
parser.add_argument("--use-grasp-predictor", action="store_true", help="use grasp predictor")
parser.add_argument("--use-ray", action="store_true", help="use Ray")
parser.add_argument("--pretrained-dir", help="pretrained model directory")
...
配置系统支持从YAML文件加载默认配置,并通过命令行参数覆盖特定配置项,这种设计使得实验管理更加灵活。
2. 训练阶段划分
项目将训练过程分为两个主要阶段:
-
预训练阶段(pretrain):
- 在仿真环境中进行大规模训练
- 使用专家演示引导策略学习
- 应用DART(Data Aggregation with Random Trajectories)和DAgger(Dataset Aggregation)技术
-
微调阶段(finetune):
- 针对特定场景进行精细调整
- 减少对专家演示的依赖
- 专注于策略的稳定性和泛化能力
3. 策略网络设计
HandoverSim2RealPolicy是项目的核心策略网络,具有以下特点:
- 支持DDPG(Deep Deterministic Policy Gradient)算法
- 可选集成抓取预测器(grasp predictor)
- 实现动作空间到关节空间的转换
- 处理仿真与现实的差异
4. 训练数据收集
ActorWrapper负责与环境交互收集训练数据,其关键功能包括:
- 场景随机化:每次训练从不同场景开始
- 专家演示生成:使用OMG规划器生成参考轨迹
- 数据增强:应用噪声和扰动提高鲁棒性
- 失败案例记录:追踪不同类型的失败情况
class ActorWrapper:
def __init__(self, stage, cfg, use_ray, rollout_agent, ...):
self._env = HandoverBenchmarkWrapper(gym.make(self._cfg.ENV.ID, cfg=self._cfg))
self._policy = HandoverSim2RealPolicy(...)
...
5. 分布式训练支持
项目支持通过Ray框架进行分布式训练:
- 多个Actor并行收集数据
- 分离的Learner进行模型更新
- 高效的参数服务器设计
if args.use_ray:
ray.init(runtime_env=runtime_env)
expert_buffer = ReplayMemoryWrapper.remote(...)
online_buffer = ReplayMemoryWrapper.remote(...)
rollout_agent = RolloutAgentWrapperGPU1.remote(...)
...
关键训练技术
1. 课程学习设计
训练脚本实现了渐进式的难度提升:
- 初始阶段:高比例专家演示
- 中间阶段:逐步增加自主探索
- 后期阶段:降低噪声比例
milestone_idx = (incr_update_step > np.array(cfg.RL_TRAIN.mix_milestones)).sum().item()
explore_ratio = min(
get_valid_index(cfg.RL_TRAIN.explore_ratio_list, milestone_idx),
cfg.RL_TRAIN.explore_cap,
)
2. 数据增强技术
为提高策略的鲁棒性,项目实现了多种数据增强方法:
- 关节空间扰动:在关节空间添加随机噪声
- 轨迹重规划:在训练过程中重新规划专家轨迹
- 初始状态随机化:随机化机械臂的初始位置
3. 抓取预测集成
可选地集成抓取预测模型,在适当时机触发抓取动作:
if self._use_grasp_predictor:
state_grasp, _ = self._policy.get_state(obs)
grasp_pred = self._policy.select_action_grasp(state_grasp).item()
if grasp_pred:
run_grasp_and_back = True
训练执行流程
- 初始化环境和策略
- 进入训练主循环
- 每个迭代:
- 根据当前阶段决定探索/利用比例
- 并行收集训练数据
- 更新策略网络
- 定期评估和保存模型
for train_iter in itertools.count(start=1):
print("train iter: {:05d}".format(train_iter))
...
if args.use_ray:
refs = [actor.rollout.remote(...) for actor in actors]
ray.get(refs)
else:
actor.rollout(num_episodes, explore, test, noise_scale)
...
实际应用建议
-
硬件配置:
- 推荐使用GPU加速训练
- 分布式训练可显著提高数据收集效率
-
参数调整:
- 根据任务难度调整训练阶段时长
- 合理设置探索率衰减曲线
-
调试技巧:
- 监控不同类型失败案例的比例
- 可视化策略决策过程
总结
NVlabs/handover-sim2real的训练脚本实现了一套完整的仿真到现实迁移解决方案,通过精心设计的训练流程和多种强化学习技术,有效解决了机器人交接任务中的复杂挑战。该实现既考虑了算法效果,也注重工程实践,为类似任务提供了有价值的参考。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396