NVlabs/handover-sim2real项目训练流程深度解析
2025-07-08 21:41:36作者:尤峻淳Whitney
项目背景与概述
NVlabs/handover-sim2real项目专注于解决机器人交接任务中的仿真到现实(simulation-to-real)迁移问题。该项目通过深度强化学习训练策略,使机器人能够高效、安全地完成物品交接任务。训练脚本train.py是该项目的核心训练实现,包含了完整的训练流程和算法细节。
训练流程架构
训练脚本采用了典型的强化学习训练框架,包含以下几个关键组件:
- 环境封装:HandoverBenchmarkWrapper提供标准化的交接任务环境
- 策略网络:HandoverSim2RealPolicy实现核心决策逻辑
- 经验回放:ReplayMemoryWrapper管理训练数据
- 训练器:Trainer/TrainerRemote协调训练过程
核心训练逻辑解析
1. 参数配置与初始化
训练脚本首先处理命令行参数和配置文件:
def parse_args():
parser = argparse.ArgumentParser(description="Train.")
parser.add_argument("--cfg-file", help="path to config file")
parser.add_argument("--seed", default=0, type=int, help="random seed")
parser.add_argument("--use-grasp-predictor", action="store_true", help="use grasp predictor")
parser.add_argument("--use-ray", action="store_true", help="use Ray")
parser.add_argument("--pretrained-dir", help="pretrained model directory")
...
配置系统支持从YAML文件加载默认配置,并通过命令行参数覆盖特定配置项,这种设计使得实验管理更加灵活。
2. 训练阶段划分
项目将训练过程分为两个主要阶段:
-
预训练阶段(pretrain):
- 在仿真环境中进行大规模训练
- 使用专家演示引导策略学习
- 应用DART(Data Aggregation with Random Trajectories)和DAgger(Dataset Aggregation)技术
-
微调阶段(finetune):
- 针对特定场景进行精细调整
- 减少对专家演示的依赖
- 专注于策略的稳定性和泛化能力
3. 策略网络设计
HandoverSim2RealPolicy是项目的核心策略网络,具有以下特点:
- 支持DDPG(Deep Deterministic Policy Gradient)算法
- 可选集成抓取预测器(grasp predictor)
- 实现动作空间到关节空间的转换
- 处理仿真与现实的差异
4. 训练数据收集
ActorWrapper负责与环境交互收集训练数据,其关键功能包括:
- 场景随机化:每次训练从不同场景开始
- 专家演示生成:使用OMG规划器生成参考轨迹
- 数据增强:应用噪声和扰动提高鲁棒性
- 失败案例记录:追踪不同类型的失败情况
class ActorWrapper:
def __init__(self, stage, cfg, use_ray, rollout_agent, ...):
self._env = HandoverBenchmarkWrapper(gym.make(self._cfg.ENV.ID, cfg=self._cfg))
self._policy = HandoverSim2RealPolicy(...)
...
5. 分布式训练支持
项目支持通过Ray框架进行分布式训练:
- 多个Actor并行收集数据
- 分离的Learner进行模型更新
- 高效的参数服务器设计
if args.use_ray:
ray.init(runtime_env=runtime_env)
expert_buffer = ReplayMemoryWrapper.remote(...)
online_buffer = ReplayMemoryWrapper.remote(...)
rollout_agent = RolloutAgentWrapperGPU1.remote(...)
...
关键训练技术
1. 课程学习设计
训练脚本实现了渐进式的难度提升:
- 初始阶段:高比例专家演示
- 中间阶段:逐步增加自主探索
- 后期阶段:降低噪声比例
milestone_idx = (incr_update_step > np.array(cfg.RL_TRAIN.mix_milestones)).sum().item()
explore_ratio = min(
get_valid_index(cfg.RL_TRAIN.explore_ratio_list, milestone_idx),
cfg.RL_TRAIN.explore_cap,
)
2. 数据增强技术
为提高策略的鲁棒性,项目实现了多种数据增强方法:
- 关节空间扰动:在关节空间添加随机噪声
- 轨迹重规划:在训练过程中重新规划专家轨迹
- 初始状态随机化:随机化机械臂的初始位置
3. 抓取预测集成
可选地集成抓取预测模型,在适当时机触发抓取动作:
if self._use_grasp_predictor:
state_grasp, _ = self._policy.get_state(obs)
grasp_pred = self._policy.select_action_grasp(state_grasp).item()
if grasp_pred:
run_grasp_and_back = True
训练执行流程
- 初始化环境和策略
- 进入训练主循环
- 每个迭代:
- 根据当前阶段决定探索/利用比例
- 并行收集训练数据
- 更新策略网络
- 定期评估和保存模型
for train_iter in itertools.count(start=1):
print("train iter: {:05d}".format(train_iter))
...
if args.use_ray:
refs = [actor.rollout.remote(...) for actor in actors]
ray.get(refs)
else:
actor.rollout(num_episodes, explore, test, noise_scale)
...
实际应用建议
-
硬件配置:
- 推荐使用GPU加速训练
- 分布式训练可显著提高数据收集效率
-
参数调整:
- 根据任务难度调整训练阶段时长
- 合理设置探索率衰减曲线
-
调试技巧:
- 监控不同类型失败案例的比例
- 可视化策略决策过程
总结
NVlabs/handover-sim2real的训练脚本实现了一套完整的仿真到现实迁移解决方案,通过精心设计的训练流程和多种强化学习技术,有效解决了机器人交接任务中的复杂挑战。该实现既考虑了算法效果,也注重工程实践,为类似任务提供了有价值的参考。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217