Torchhd 开源项目教程
2024-09-25 05:41:11作者:宗隆裙
1. 项目介绍
Torchhd 是一个基于 Python 的库,专门用于超维度计算(Hyperdimensional Computing,HDC)和向量符号架构(Vector Symbolic Architectures,VSA)。这个库旨在简化开发各种超维度计算应用和算法的过程。对于初学者,Torchhd 提供了 Pythonic 的抽象和示例,帮助快速上手。对于经验丰富的研究人员,Torchhd 设计为模块化,提供了极大的灵活性,便于快速原型设计新想法。
2. 项目快速启动
安装
首先,确保你已经安装了 PyTorch。然后,使用以下命令安装 Torchhd:
pip install torch-hd
或者使用 Conda:
conda install -c torchhd torchhd
快速示例
以下是一个简单的示例,展示了如何使用 Torchhd 创建和操作超向量:
import torch
import torchhd
# 设置超向量的维度
d = 10000
# 创建符号的超向量
keys = torchhd.random(3, d)
country, capital, currency = keys
# 创建具体国家的超向量
usa, mex = torchhd.random(2, d) # 美国和墨西哥
wdc, mxc = torchhd.random(2, d) # 华盛顿和墨西哥城
usd, mxn = torchhd.random(2, d) # 美元和墨西哥比索
# 创建国家表示
us_values = torch.stack([usa, wdc, usd])
us = torchhd.hash_table(keys, us_values)
mx_values = torch.stack([mex, mxc, mxn])
mx = torchhd.hash_table(keys, mx_values)
# 组合所有相关信息
mx_us = torchhd.bind(torchhd.inverse(us), mx)
# 查询墨西哥的美元
usd_of_mex = torchhd.bind(mx_us, usd)
# 创建内存
memory = torch.cat([keys, us_values, mx_values], dim=0)
# 计算相似度
similarity = torchhd.cosine_similarity(usd_of_mex, memory)
print(similarity)
3. 应用案例和最佳实践
应用案例
Torchhd 可以应用于多种场景,包括但不限于:
- 自然语言处理:通过超维度计算处理和表示文本数据。
- 图像识别:使用超向量表示图像特征,进行高效的图像分类。
- 推荐系统:利用超维度计算进行用户和物品的表示,提升推荐效果。
最佳实践
- 模块化设计:利用 Torchhd 的模块化特性,将复杂的计算任务分解为多个小模块,便于调试和优化。
- 性能优化:利用 PyTorch 的 GPU 加速功能,将计算任务分配到 GPU 上,提升计算效率。
4. 典型生态项目
- PyTorch:Torchhd 基于 PyTorch 构建,充分利用了 PyTorch 的高性能和张量操作能力。
- NumPy:虽然 Torchhd 主要依赖 PyTorch,但与 NumPy 的兼容性也很好,便于数据处理和转换。
- Scikit-learn:结合 Scikit-learn 的机器学习工具,可以进一步提升 Torchhd 在实际应用中的表现。
通过以上内容,您可以快速了解并开始使用 Torchhd 进行超维度计算和向量符号架构的研究和应用。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868