解决create-t3-turbo项目中Expo启动失败的常见问题分析
create-t3-turbo是一个流行的全栈开发模板项目,它整合了Expo、Next.js等现代前端技术栈。在使用过程中,开发者可能会遇到Expo启动失败的问题,本文将深入分析这些问题的成因和解决方案。
开发模式与Expo Go的选择问题
在create-t3-turbo项目中,Expo启动失败的一个常见原因是开发模式选择不当。当开发者尝试使用开发模式而非Expo Go时,可能会遇到启动失败的情况。正确的做法是明确指定使用Expo Go模式启动应用:
expo start --ios --go
或者对于Android设备:
expo start --android --go
开发构建的必要步骤
如果开发者确实需要使用开发构建而非Expo Go,则需要先执行构建命令。在首次使用开发构建时,必须运行:
expo run:ios
或对于Android:
expo run:android
完成首次构建后,后续的expo start --ios命令才能正常工作。这个步骤确保了必要的开发构建文件已经生成。
FlashList依赖引发的TypeError问题
另一个常见错误是启动时出现的"TypeError: Cannot read property '__extends' of undefined",这通常与Shopify的FlashList组件有关。这个问题在FlashList的1.7.1版本中已得到修复。
解决方案有两种:
-
升级FlashList:将FlashList升级到1.7.1或更高版本可以解决此问题。
-
配置Metro解析器:如果暂时无法升级,可以通过修改metro.config.js文件来添加别名解析:
const ALIASES = {
tslib: path.resolve(__dirname, "node_modules/tslib/tslib.es6.js")
};
config.resolver.resolveRequest = (context, moduleName, platform) => {
return context.resolveRequest(
context,
ALIASES[moduleName] ?? moduleName,
platform
);
};
环境清理与重建
当遇到难以诊断的问题时,完整的清理和重建往往能解决问题:
pnpm clean:workspaces
pnpm store prune
rm -rf .turbo
pnpm i
pnpm build
这一系列命令会清除缓存、删除生成文件并重新安装所有依赖,确保项目从一个干净的状态开始构建。
总结
create-t3-turbo项目中的Expo启动问题通常源于几个关键点:开发模式选择不当、缺少初始构建步骤、特定依赖版本问题以及环境状态不一致。通过理解这些问题的根源并采取相应的解决措施,开发者可以顺利启动Expo应用并继续开发工作。
记住,在遇到问题时,检查依赖版本、确认构建步骤完整性和保持环境清洁是解决问题的三个关键方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00