Raw-packet 项目使用教程
2024-09-25 16:33:59作者:史锋燃Gardner
1. 项目介绍
Raw-packet 是一个开源项目,旨在通过原始套接字(raw socket)实现多种网络协议,如 Ethernet、ARP、IPv4、UDP、TCP、DHCPv4、ICMPv4、IPv6、DHCPv6、ICMPv6、DNS 和 MDNS。该项目主要用于教育目的,帮助用户理解网络协议的工作原理,并且不能用于法律违规或个人利益。
项目特点
- 多平台支持:支持 Windows、MacOS 和 Linux。
- 多协议支持:涵盖了多种网络协议,适用于多种网络攻击和防御场景。
- 高性能:项目设计旨在提高网络请求的性能和速度,特别是在网络攻击场景下。
2. 项目快速启动
安装
Debian 系操作系统(如 Ubuntu)
sudo apt update
sudo apt install -y python3 python3-pip wireless-tools tshark
pip3 install --upgrade pip
sudo pip3 install raw-packet
MacOS
- 安装 Homebrew:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)" - 添加仓库到 Homebrew:
brew tap raw-packet/raw-packet - 安装 Raw-packet:
brew install raw-packet
Windows
- 安装 Wireshark。
- 安装 Python 3.8。
- 安装 Raw-packet:
pip3 install --upgrade pip pip3 install raw-packet
使用示例
以下是一个简单的 ARP 扫描示例,用于查找本地网络中的活动主机。
from raw_packet.Utils.network import RawEthernet, RawARP
# 创建 RawEthernet 和 RawARP 对象
ethernet = RawEthernet()
arp = RawARP()
# 设置网络接口
interface = "eth0"
# 发送 ARP 请求
arp.send_request(interface=interface)
# 接收 ARP 响应
response = arp.receive_response(interface=interface)
print(response)
3. 应用案例和最佳实践
应用案例
网络攻击模拟
Raw-packet 可以用于模拟多种网络攻击,如 ARP 欺骗、DHCP 欺骗等。通过这些模拟,安全研究人员可以测试和改进网络防御机制。
网络协议学习
对于网络协议的学习者来说,Raw-packet 提供了一个实际操作的平台,帮助理解各种网络协议的工作原理。
最佳实践
- 教育目的:仅限于教育目的使用,不得用于非法活动。
- 性能测试:在实际使用前,建议进行性能测试,以确保在特定网络环境下的最佳表现。
- 安全配置:在使用过程中,确保网络和系统的安全配置,避免潜在的安全风险。
4. 典型生态项目
Scapy
Scapy 是另一个强大的网络工具,支持多种协议的解析和生成。Raw-packet 可以与 Scapy 结合使用,提供更全面的网络协议处理能力。
Wireshark
Wireshark 是一个广泛使用的网络协议分析工具。Raw-packet 可以与 Wireshark 结合,用于捕获和分析网络数据包。
Nmap
Nmap 是一个网络扫描工具,用于发现网络中的主机和服务。Raw-packet 可以与 Nmap 结合,用于更深入的网络扫描和分析。
通过这些生态项目的结合,Raw-packet 可以提供更强大的网络协议处理和分析能力,适用于多种网络研究和安全测试场景。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134