Azure Mobile Services 开源项目教程
1. 项目介绍
Azure Mobile Services 是一个已被弃用的项目,现已被 Azure App Service Mobile Apps 所取代。该项目旨在为移动应用提供后端服务,支持 iOS、Android、Windows 等多个平台。尽管该项目已被弃用,但其源代码仍然可以在 GitHub 上找到,并且对于理解移动后端服务的实现方式仍然具有一定的参考价值。
2. 项目快速启动
2.1 克隆项目
首先,你需要从 GitHub 上克隆 Azure Mobile Services 的源代码:
git clone https://github.com/WindowsAzure/azure-mobile-services.git
cd azure-mobile-services
2.2 构建项目
2.2.1 iOS 客户端 SDK
-
打开 Xcode,加载项目文件:
open sdk/iOS/WindowsAzureMobileServices.xcodeproj -
设置活动方案为
Framework\iOS Device,然后使用Command-B构建项目。 -
将生成的
WindowsAzureMobileServices.framework拖放到你的 iOS 应用项目的Frameworks文件夹中。
2.2.2 Android 客户端 SDK
-
使用 Android Studio 打开项目:
open sdk/android -
项目会自动构建。如果未自动构建,右键点击
sdk文件夹并选择Make Module 'sdk'。 -
生成的
sdk-release.aar文件位于sdk/android/src/sdk/build/outputs/aar目录下。
2.3 运行测试
2.3.1 iOS 测试
-
在 Xcode 中打开测试项目:
open sdk/iOS/WindowsAzureMobileServices.xcodeproj -
设置活动方案为
WindowsAzureMobileServices* Simulator。 -
在
settings.plist文件中设置TestAppUrl和TestAppApplicationKey。 -
使用
Command-U运行测试。
2.3.2 Android 测试
-
在 Android Studio 中打开测试项目:
open sdk/android -
右键点击
sdk.testapp文件夹,选择Run 'Tests in com.microsoft.windowsazure.mobileservices.sdk.testapp'。
3. 应用案例和最佳实践
尽管 Azure Mobile Services 已被弃用,但其在移动应用后端服务的设计和实现上仍然具有一定的参考价值。以下是一些应用案例和最佳实践:
- 多平台支持:Azure Mobile Services 支持 iOS、Android 和 Windows 等多个平台,展示了如何为不同平台提供一致的后端服务。
- 模块化设计:项目采用模块化设计,便于扩展和维护。
- 测试驱动开发:项目包含详细的测试用例,展示了如何通过测试驱动开发来保证代码质量。
4. 典型生态项目
Azure Mobile Services 已被 Azure App Service Mobile Apps 所取代,后者提供了更强大的功能和更好的性能。以下是一些与 Azure Mobile Services 相关的生态项目:
- Azure App Service Mobile Apps:Azure Mobile Services 的继任者,提供了更丰富的功能和更好的性能。
- Azure Functions:用于构建无服务器应用程序,可以与 Mobile Apps 结合使用,提供更灵活的后端服务。
- Azure Cosmos DB:用于存储和管理数据,支持多种数据模型,适合与 Mobile Apps 结合使用。
通过学习和参考 Azure Mobile Services 的源代码和设计思路,开发者可以更好地理解和使用 Azure App Service Mobile Apps 等现代移动后端服务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00