NORESQA 开源项目教程
2025-05-21 22:51:31作者:伍霜盼Ellen
1. 项目介绍
NORESQA(Non-Matching Reference-based Speech Quality Assessment)是一个基于非匹配参考的语音质量评估框架。该框架使用非匹配参考(NMT)和给定的测试语音信号来估计语音质量。在NORESQA框架下,有两个指标:NORESQA-score和NORESQA-MOS。NORESQA-score是基于SI-SDR的指标,用于预测测试语音与给定NMR之间的绝对相对SI-SDR以及测试语音比NMR更干净的的概率。而NORESQA-MOS则设计用于估计平均意见得分(MOS)。
2. 项目快速启动
环境准备
首先,确保你的系统中已经安装了以下Python库:Pytorch(支持GPU)、Scipy、Numpy(版本1.14或更高)、Librosa和fairseq。你可以通过以下命令在conda环境中安装所有依赖:
conda env create -f requirements.yml
激活环境:
conda activate noresqa
配置模型
在main.py中设置CONFIG_PATH,这是用于实例化NORESQA-MOS模型的Wav2Vec 2.0 Base模型的路径。默认情况下,可以从这里下载Wav2Vec 2.0 Base模型,并将其放入models/目录中。
运行示例
以下是一个运行NORESQA框架的示例命令:
python main.py --GPU_id -1 --metric_type 1 --mode file --test_file path1 --nmr path2
--GPU_id:指定使用的GPU编号(-1代表CPU)。--metric_type:0代表NORESQA-score,1代表NORESQA-MOS。--mode:使用单个NMR或NMR列表。--test_file:测试录音的路径。--nmr:NMR文件的路径或包含文件名的txt文件。
输出示例
对于NORESQA-score,输出可能如下:
Probaility of the test speech cleaner than the given NMR = 0.11526459
NORESQA score of the test speech with respect to the given NMR = 18.595860697038006
对于NORESQA-MOS,输出可能如下:
MOS score of the test speech (assuming NMR is clean) = 2.003323554992676
注意,对于NORESQA-MOS,模型的默认输出是相对MOS。实际MOS输出为5 - (model_output)。
3. 应用案例和最佳实践
在应用NORESQA进行语音质量评估时,以下是一些最佳实践:
- 确保使用的NMR是干净的,因为NORESQA-MOS的预测基于假设提供的NMR是干净的。
- 如果输入录音的采样率不是16KHz,代码会自动调整到16KHz。
- 如果使用的GPU是非确定性的,结果可能会有轻微的差异。
4. 典型生态项目
NORESQA项目是基于Pytorch框架,可以与多个开源库和工具集成,例如:
- 使用Librosa进行音频处理。
- 利用fairseq进行序列到序列模型训练。
- 结合Scipy和Numpy进行数学运算。
这些工具和库的集成使得NORESQA可以适应多种语音处理任务,并在开源社区中得到广泛应用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19