NORESQA 开源项目教程
2025-05-21 09:28:55作者:伍霜盼Ellen
1. 项目介绍
NORESQA(Non-Matching Reference-based Speech Quality Assessment)是一个基于非匹配参考的语音质量评估框架。该框架使用非匹配参考(NMT)和给定的测试语音信号来估计语音质量。在NORESQA框架下,有两个指标:NORESQA-score和NORESQA-MOS。NORESQA-score是基于SI-SDR的指标,用于预测测试语音与给定NMR之间的绝对相对SI-SDR以及测试语音比NMR更干净的的概率。而NORESQA-MOS则设计用于估计平均意见得分(MOS)。
2. 项目快速启动
环境准备
首先,确保你的系统中已经安装了以下Python库:Pytorch(支持GPU)、Scipy、Numpy(版本1.14或更高)、Librosa和fairseq。你可以通过以下命令在conda环境中安装所有依赖:
conda env create -f requirements.yml
激活环境:
conda activate noresqa
配置模型
在main.py中设置CONFIG_PATH,这是用于实例化NORESQA-MOS模型的Wav2Vec 2.0 Base模型的路径。默认情况下,可以从这里下载Wav2Vec 2.0 Base模型,并将其放入models/目录中。
运行示例
以下是一个运行NORESQA框架的示例命令:
python main.py --GPU_id -1 --metric_type 1 --mode file --test_file path1 --nmr path2
--GPU_id:指定使用的GPU编号(-1代表CPU)。--metric_type:0代表NORESQA-score,1代表NORESQA-MOS。--mode:使用单个NMR或NMR列表。--test_file:测试录音的路径。--nmr:NMR文件的路径或包含文件名的txt文件。
输出示例
对于NORESQA-score,输出可能如下:
Probaility of the test speech cleaner than the given NMR = 0.11526459
NORESQA score of the test speech with respect to the given NMR = 18.595860697038006
对于NORESQA-MOS,输出可能如下:
MOS score of the test speech (assuming NMR is clean) = 2.003323554992676
注意,对于NORESQA-MOS,模型的默认输出是相对MOS。实际MOS输出为5 - (model_output)。
3. 应用案例和最佳实践
在应用NORESQA进行语音质量评估时,以下是一些最佳实践:
- 确保使用的NMR是干净的,因为NORESQA-MOS的预测基于假设提供的NMR是干净的。
- 如果输入录音的采样率不是16KHz,代码会自动调整到16KHz。
- 如果使用的GPU是非确定性的,结果可能会有轻微的差异。
4. 典型生态项目
NORESQA项目是基于Pytorch框架,可以与多个开源库和工具集成,例如:
- 使用Librosa进行音频处理。
- 利用fairseq进行序列到序列模型训练。
- 结合Scipy和Numpy进行数学运算。
这些工具和库的集成使得NORESQA可以适应多种语音处理任务,并在开源社区中得到广泛应用。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.46 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
546
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
409
Ascend Extension for PyTorch
Python
86
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
122