Type-Fest项目中WritableKeysOf类型的缺陷分析与解决方案
问题背景
在TypeScript类型编程中,Type-Fest项目提供了一个非常实用的WritableKeysOf工具类型,用于提取对象类型中所有可写属性的键。然而,这个类型在某些情况下会出现不符合预期的行为,特别是当处理包含可选属性或只读属性的接口时。
问题现象
当使用WritableKeysOf处理如下接口时:
interface User {
name: string;
surname?: string;
readonly id: number;
}
理论上,我们期望WritableKeysOf<User>返回"name" | "surname",因为:
name是可写的常规属性surname是可写的可选属性id是只读属性,不应包含在内
但实际返回的类型却是"name" | "surname" | undefined,这显然不符合预期,因为undefined不应该出现在属性键的联合类型中。
问题分析
原始实现的问题
Type-Fest项目中WritableKeysOf的原始实现大致如下:
type WritableKeysOf<T> = {
[P in keyof T]: IsEqual<{ [Q in P]: T[P] }, { readonly [Q in P]: T[P] }> extends false ? P : never
}[keyof T];
这个实现存在两个主要问题:
-
未处理可选属性:当处理可选属性时,映射类型会保留
undefined的可能性,导致最终结果中也包含undefined。 -
未正确处理联合类型:当处理联合类型时,类型比较可能会产生意外结果。
解决方案探索
针对第一个问题,可以通过添加-?修饰符来移除可选性:
type WritableKeysOf<T> = {
[P in keyof T]-?: IsEqual<{ [Q in P]: T[P] }, { readonly [Q in P]: T[P] }> extends false ? P : never
}[keyof T];
这个修改确实解决了undefined出现在结果中的问题,但它并不能完全解决所有情况,特别是当处理联合类型时。
深入解决方案
更健壮的实现
为了创建一个更健壮的WritableKeysOf实现,我们需要考虑以下几点:
- 正确处理可选属性:使用
-?移除可选性 - 正确处理只读属性:准确识别哪些属性是只读的
- 处理联合类型:确保在联合类型上也能正确工作
一个更完整的实现可能如下:
type WritableKeysOf<T> = {
[P in keyof T]-?: IfEquals<
{ [Q in P]: T[P] },
{ -readonly [Q in P]: T[P] },
P,
never
>
}[keyof T];
这里使用了IfEquals类型来精确比较两个类型是否相等,同时使用-readonly来确保我们比较的是非只读版本。
类型比较的复杂性
在TypeScript中,准确比较两个类型是否相等是一个复杂的问题。简单的extends检查往往不够,因为TypeScript的类型系统是结构化的。我们需要更精确的类型比较技术,通常使用交叉类型和条件类型的组合来实现。
实际应用建议
在实际项目中,如果需要使用WritableKeysOf类型,建议:
- 明确需求:确定你是否真的需要区分可写和只读属性
- 测试边界情况:在使用前测试各种边界情况,包括可选属性、联合类型等
- 考虑替代方案:有时候简单的
keyof T可能就足够了,不需要区分可写性
总结
TypeScript的类型系统虽然强大,但在处理一些边缘情况时仍然存在挑战。WritableKeysOf类型的实现展示了在类型编程中需要考虑的各种因素,包括可选性、只读性和联合类型等。通过深入理解这些概念和仔细处理各种边界情况,我们可以创建出更健壮、更可靠的工具类型。
对于Type-Fest项目而言,这个问题也提醒我们在设计通用工具类型时需要全面考虑各种使用场景,确保类型在不同情况下都能表现出符合预期的行为。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00