从MuJoCo Menagerie模型中提取Denavit-Hartenberg参数的技术解析
2025-07-05 05:01:44作者:胡易黎Nicole
背景介绍
在机器人运动学分析中,Denavit-Hartenberg(DH)参数是一种广泛使用的标准化方法,用于描述机器人连杆之间的几何关系。MuJoCo Menagerie作为一个高质量的机器人模型集合,其模型精度和真实性备受关注。本文将深入探讨如何从MuJoCo Menagerie模型中获取DH参数,并验证其运动学计算的准确性。
DH参数基础
DH参数分为标准DH参数和修正DH参数(Craig's convention)两种形式。它们的主要区别在于坐标系分配和参数定义方式:
- 标准DH参数:每个坐标系建立在连杆的远端
- 修正DH参数:每个坐标系建立在连杆的近端
Franka Panda机器人使用的是修正DH参数,这一点在实际应用中需要特别注意。修正DH参数变换矩阵的计算公式与标准DH参数有所不同。
从MuJoCo模型获取DH参数的方法
虽然MuJoCo本身不提供直接提取DH参数的接口,但可以通过以下途径获取:
- 查阅原始机器人文档:如Franka机器人官方提供的技术参数文档
- 参考学术论文:许多研究论文会公布机器人模型的详细DH参数
- 使用第三方库验证:如Pinocchio或Robotics Toolbox Python等库可能已经内置了标准机器人的DH参数
MuJoCo Menagerie中的模型尺寸与真实机器人完全一致,这保证了运动学计算的准确性。
运动学验证实践
通过实际案例验证,我们可以确认MuJoCo Menagerie模型与DH参数计算的一致性。以下是关键发现:
- 使用修正DH参数计算的正运动学结果与MuJoCo原生计算结果完全一致
- 标准DH参数会产生错误结果,验证了Franka Panda必须使用修正DH参数
- 通过三种不同实现(MuJoCo原生、Pinocchio、Robotics Toolbox Python)的交叉验证,确保了结果的可靠性
实现修正DH参数的正运动学
以下是使用PyTorch实现基于修正DH参数的正运动学计算核心代码:
def homog_trans_mat_craig(dh_params, i, joint_config):
"""计算修正DH参数变换矩阵"""
a_nm1 = torch.tensor([dh_params[i-1]['a']])
alpha_nm1 = torch.tensor([dh_params[i-1]['alpha']])
d_n = torch.tensor([dh_params[i-1]['d']])
theta_n = torch.tensor([dh_params[i-1]['theta']]) + joint_config[i-1]
return torch.tensor([
[torch.cos(theta_n), -torch.sin(theta_n), 0, a_nm1],
[torch.sin(theta_n)*torch.cos(alpha_nm1), torch.cos(theta_n)*torch.cos(alpha_nm1), -torch.sin(alpha_nm1), -d_n*torch.sin(alpha_nm1)],
[torch.sin(theta_n)*torch.sin(alpha_nm1), torch.cos(theta_n)*torch.sin(alpha_nm1), torch.cos(alpha_nm1), d_n*torch.cos(alpha_nm1)],
[0, 0, 0, 1]])
结论与建议
- MuJoCo Menagerie模型保持了与真实机器人一致的几何参数,可以放心用于运动学分析
- 不同机器人可能使用不同类型的DH参数,使用前必须确认参数类型
- 建议通过多种方法交叉验证运动学计算结果
- 对于Franka Panda/Franka Emika系列机器人,必须使用修正DH参数
在实际应用中,如果仅需要正运动学计算,直接使用MuJoCo原生接口即可获得准确结果。当需要外部计算时,务必确保使用正确的DH参数类型和数值。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134