从MuJoCo Menagerie模型中提取Denavit-Hartenberg参数的技术解析
2025-07-05 21:37:24作者:胡易黎Nicole
背景介绍
在机器人运动学分析中,Denavit-Hartenberg(DH)参数是一种广泛使用的标准化方法,用于描述机器人连杆之间的几何关系。MuJoCo Menagerie作为一个高质量的机器人模型集合,其模型精度和真实性备受关注。本文将深入探讨如何从MuJoCo Menagerie模型中获取DH参数,并验证其运动学计算的准确性。
DH参数基础
DH参数分为标准DH参数和修正DH参数(Craig's convention)两种形式。它们的主要区别在于坐标系分配和参数定义方式:
- 标准DH参数:每个坐标系建立在连杆的远端
- 修正DH参数:每个坐标系建立在连杆的近端
Franka Panda机器人使用的是修正DH参数,这一点在实际应用中需要特别注意。修正DH参数变换矩阵的计算公式与标准DH参数有所不同。
从MuJoCo模型获取DH参数的方法
虽然MuJoCo本身不提供直接提取DH参数的接口,但可以通过以下途径获取:
- 查阅原始机器人文档:如Franka机器人官方提供的技术参数文档
- 参考学术论文:许多研究论文会公布机器人模型的详细DH参数
- 使用第三方库验证:如Pinocchio或Robotics Toolbox Python等库可能已经内置了标准机器人的DH参数
MuJoCo Menagerie中的模型尺寸与真实机器人完全一致,这保证了运动学计算的准确性。
运动学验证实践
通过实际案例验证,我们可以确认MuJoCo Menagerie模型与DH参数计算的一致性。以下是关键发现:
- 使用修正DH参数计算的正运动学结果与MuJoCo原生计算结果完全一致
- 标准DH参数会产生错误结果,验证了Franka Panda必须使用修正DH参数
- 通过三种不同实现(MuJoCo原生、Pinocchio、Robotics Toolbox Python)的交叉验证,确保了结果的可靠性
实现修正DH参数的正运动学
以下是使用PyTorch实现基于修正DH参数的正运动学计算核心代码:
def homog_trans_mat_craig(dh_params, i, joint_config):
"""计算修正DH参数变换矩阵"""
a_nm1 = torch.tensor([dh_params[i-1]['a']])
alpha_nm1 = torch.tensor([dh_params[i-1]['alpha']])
d_n = torch.tensor([dh_params[i-1]['d']])
theta_n = torch.tensor([dh_params[i-1]['theta']]) + joint_config[i-1]
return torch.tensor([
[torch.cos(theta_n), -torch.sin(theta_n), 0, a_nm1],
[torch.sin(theta_n)*torch.cos(alpha_nm1), torch.cos(theta_n)*torch.cos(alpha_nm1), -torch.sin(alpha_nm1), -d_n*torch.sin(alpha_nm1)],
[torch.sin(theta_n)*torch.sin(alpha_nm1), torch.cos(theta_n)*torch.sin(alpha_nm1), torch.cos(alpha_nm1), d_n*torch.cos(alpha_nm1)],
[0, 0, 0, 1]])
结论与建议
- MuJoCo Menagerie模型保持了与真实机器人一致的几何参数,可以放心用于运动学分析
- 不同机器人可能使用不同类型的DH参数,使用前必须确认参数类型
- 建议通过多种方法交叉验证运动学计算结果
- 对于Franka Panda/Franka Emika系列机器人,必须使用修正DH参数
在实际应用中,如果仅需要正运动学计算,直接使用MuJoCo原生接口即可获得准确结果。当需要外部计算时,务必确保使用正确的DH参数类型和数值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881