Lyzr SDK 开源项目实战指南
项目介绍
Lyzr 是一个低代码代理框架,它采用了一种代理方法来构建生成式人工智能(GenAI)应用,旨在让开发者以更快的速度打造私有且安全的GenAI应用。通过其完全集成的代理,配备了预建的RAG(检索增强生成)管道,Lyzr让你能够将市面上热门的GenAI SaaS产品转化为企业级应用,在几分钟内实现部署。这个框架适用于希望迅速整合AI特性的CTO、CPo以及寻求在本地云中保持数据隐私的CIO,提供了包括Chatbot、知识搜索在内的多种预先构建的代理,并通过其AI管理系统(AIMS)简化了AI代理的监控和管理。
项目快速启动
环境准备
确保你的开发环境已安装Python 3.x版本,以及setuptools和wheel库。
安装Lyzr
你可以直接从PyPI安装Lyzr包:
pip install lyzr
或者,如果你想要从源码构建安装:
-
克隆仓库:
git clone https://github.com/LyzrCore/lyzr.git -
环境准备:
确保安装
setuptools和wheel:pip install setuptools wheel -
构建并安装包:
导航到项目根目录,并执行以下命令构建和打包:
python setup.py sdist bdist_wheel -
安装构建后的包:
进入
dist目录,并安装相应的.whl文件,记得替换[version]为实际版本号:pip install lyzr-[version]-py3-none-any.whl
启动示例:简易ChatBot
让我们快速启动一个基于PDF问答的ChatBot作为实例:
首先安装必要的依赖:
pip install lyzr[pdf]
然后启动ChatBot:
from lyzr import ChatBot
my_chatbot = ChatBot(pdf_chat=True, input_files=["path/to/your/pdf"])
response = my_chatbot.chat("请问这份报告的主要结论是什么?")
print(response)
这段代码将初始化一个能够处理PDF文件的ChatBot,并对PDF中的内容进行查询。
应用案例和最佳实践
Lyzr被广泛应用于企业自动化场景,如客户支持自动化、市场材料生成、招聘流程优化等。例如,一家教育科技公司利用Lyzr构建了一个自定义的虚拟助教,该助教可以自动解答学生的问题,提供个性化学习资源推荐,极大地提高了教学互动效率并降低了人力成本。
最佳实践包括:
- 在设计代理时明确业务需求,选择或定制恰当的代理类型。
- 利用Lyzr的多代理自动化平台(Lyzr Automata)协调多个AI代理工作流。
- 遵循Lyzr官方文档提供的配置和调优建议,确保性能最大化。
典型生态项目
Lyzr与Weaviate、Streamlit、Qdrant、Vellum等技术栈集成,允许开发者创建更强大的AI应用。例如,结合Weaviate的矢量数据库能力,Lyzr可以提供更智能的知识图谱搜索功能,增强其知识搜索代理的能力。
在构建自己的GenAI应用时,探索这些生态伙伴的结合使用,能够扩展Lyzr的功能边界,实现更加复杂和高效的数据分析和知识管理解决方案。
本指南为你提供了从入门到实践的全流程指导,帮助你在短时间内启动Lyzr项目,并充分利用它构建创新的GenAI应用。记得随时参考Lyzr的官方文档和社区资源,以获得最新信息和技术支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00