Flash Attention项目编译过程中的内存优化技巧
2025-05-13 16:06:19作者:卓艾滢Kingsley
编译过程中的内存挑战
在Flash Attention项目的编译过程中,用户可能会遇到内存消耗过大的问题。特别是在使用GH200显卡时,内存占用可能高达260GB;而在JETSON AGX Orin平台上,即使只使用3个核心,内存占用也会达到65GB左右。这种情况通常发生在编译"_deps/repo-flash-attention-src/hopper/flash_fwd_combine.cu.o"文件时。
根本原因分析
这种高内存消耗主要源于以下几个方面:
-
并行编译设置不当:默认的MAX_CORES设置可能导致系统尝试同时编译过多文件,从而占用大量内存。
-
Hopper架构支持:项目默认会编译对最新Hopper架构的支持代码,这些优化代码往往需要更多编译资源。
-
CUDA内核复杂性:Flash Attention的CUDA内核实现较为复杂,编译时需要大量中间表示和优化过程。
有效的解决方案
控制并行编译任务数
最直接的解决方案是通过设置MAX_JOBS参数来限制并行编译任务数量。例如:
export MAX_JOBS=4
这个设置可以显著降低峰值内存使用量,特别是在内存有限的设备上。
选择性编译架构支持
对于不需要Hopper架构支持的用户,可以通过修改编译配置来避免编译这部分代码。这需要:
- 检查CMake配置文件中关于架构支持的选项
- 明确指定目标架构而非使用默认值
预编译二进制包的使用
对于常见平台如Jetson AGX Orin和SBSA(Grace)架构,已经有预编译好的二进制包可用。这些预编译包可以直接安装使用,避免了本地编译的高内存需求。
针对不同硬件的优化建议
-
高性能GPU(如GH200):
- 适当增加MAX_JOBS值(如8-16)
- 确保有足够的交换空间
-
嵌入式平台(如Jetson):
- 将MAX_JOBS设置为2-4
- 考虑关闭不必要的架构支持
- 优先使用预编译包
-
内存受限系统:
- 使用MAX_JOBS=1进行串行编译
- 增加系统交换空间
- 考虑在更高配置的机器上交叉编译
编译最佳实践
- 始终监控编译过程中的内存使用情况
- 对于首次编译,建议从较低的MAX_JOBS值开始测试
- 在CI/CD环境中,根据runner配置调整并行度
- 考虑使用ccache加速重复编译过程
通过合理配置编译参数和利用现有资源,即使是在内存受限的设备上,也能成功完成Flash Attention项目的编译工作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1