Polars中分区写入Parquet文件时排除分区列的技术解析
在数据工程领域,Polars作为一个高性能的Rust实现的数据处理框架,在处理大规模数据时表现出色。本文将深入探讨Polars在写入分区Parquet文件时的一个实用功能改进——如何排除分区列以避免数据冗余。
分区写入的背景
当使用Polars的write_parquet方法配合partition_by参数时,框架会按照Hive分区风格组织输出文件。例如,指定partition_by=["col_1", "col_2"]会生成类似/col_1=value/col_2=value/000000.parquet的目录结构。
传统实现中,分区列会同时出现在两个地方:
- 作为目录路径的一部分(如
col_1=value) - 作为Parquet文件内部的列数据
这种双重存储造成了数据冗余,特别是当使用BigQuery等工具读取这些分区数据时,可能会遇到兼容性问题。
技术解决方案
Polars通过引入PartitionByKey结构和include_key参数解决了这个问题。开发者现在可以精确控制分区列是否包含在输出文件中:
lf.sink_parquet(
PartitionByKey(
path="{key[0].name}={key[0].value}/{key[1].name}={key[1].value}/0000.parquet",
by=["col_1", "col_2"],
include_key=False
),
mkdir=True
)
当include_key=False时:
- 分区列仅出现在目录路径中
- 生成的Parquet文件不包含这些列
- 读取时仍能正确重建分区结构
实现原理
这一改进背后的技术原理值得关注:
-
路径模板机制:使用
{key[0].name}和{key[0].value}等占位符动态生成路径,保持灵活性 -
列过滤:在写入Parquet前,根据
include_key设置过滤掉分区列 -
元数据保留:虽然不存储分区列数据,但通过路径保留了完整的模式信息
实际应用价值
这一功能优化带来了多重好处:
- 存储效率:消除了分区列的重复存储,节省空间
- 兼容性:更好地适配BigQuery等工具的Hive分区读取要求
- 性能优化:减少I/O和序列化开销
- 数据一致性:避免同一列在文件和路径中可能出现的值不一致问题
总结
Polars的这一改进展示了框架对实际工程需求的快速响应能力。通过精细控制分区列的存储位置,开发者现在可以更高效地构建数据管道,特别是在需要与云数据平台集成的场景下。这种对细节的关注正是Polars在数据处理领域获得青睐的原因之一。
对于需要处理分区数据的开发者,建议评估是否需要在Parquet文件中包含分区列,根据下游系统的要求选择合适的配置,以达到最优的数据处理效率。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00