Kubeflow KFServing 在离线环境中部署 InferenceService 的解决方案
问题背景
在 Kubernetes 环境中使用 Kubeflow KFServing 部署机器学习推理服务时,用户遇到了一个典型问题:当集群处于离线环境(无互联网连接)时,即使已经预先加载了所需的容器镜像,InferenceService 仍然无法正常启动。系统会错误地尝试从外部镜像仓库拉取镜像,导致服务部署失败。
问题分析
经过深入排查,发现这个问题与 Knative 的工作机制密切相关。KFServing 底层使用了 Knative Serving 来实现无服务器(Serverless)模式,而 Knative 有一个默认行为:它会尝试将镜像标签(tag)解析为具体的镜像摘要(digest)。这个解析过程需要访问外部的容器镜像仓库服务。
具体表现为:
- 用户已经通过
ctr images import将镜像导入到 containerd 中 - 在 Deployment 中可以直接使用这些本地镜像
- 但在 InferenceService 中,Knative 仍然会尝试连接外部仓库进行标签解析
- 在离线环境中,这种外部连接会失败,导致服务无法启动
解决方案
方法一:使用镜像摘要而非标签
最直接的解决方案是使用镜像的完整摘要(digest)而非标签来指定镜像。这样可以避免 Knative 进行标签解析的步骤。例如:
image: "yurkoff/torchserve-kfs@sha256:1b771d7c0c2d26f78e892997cb00e6051c77cf3654827c4715aa5a502267ee76"
方法二:配置 Knative 跳过特定仓库的标签解析
对于需要继续使用标签的场景,可以修改 Knative 的配置,使其跳过对特定镜像仓库的标签解析:
- 编辑 Knative Serving 的 ConfigMap:
kubectl edit configmap config-deployment -n knative-serving
- 添加或修改
registries-skipping-tag-resolving配置项,包含需要跳过的仓库域名:
data:
registries-skipping-tag-resolving: "kind.local,ko.local,dev.local,index.docker.io"
这个配置告诉 Knative 不要尝试解析这些仓库的镜像标签,直接使用本地已有的镜像。
技术原理
Knative 的标签解析机制设计初衷是为了确保部署的确定性和可重复性。通过将易变的标签解析为不可变的摘要,可以保证每次部署使用的都是完全相同的镜像版本。然而,在离线环境中,这种机制反而成为了障碍。
修改 registries-skipping-tag-resolving 配置后,Knative 会:
- 对于匹配的镜像仓库,直接使用指定的标签
- 不尝试连接外部仓库获取摘要信息
- 依赖 Kubernetes 本身的镜像拉取策略(如 imagePullPolicy)来处理镜像获取
最佳实践建议
- 在生产环境中,推荐使用镜像摘要来确保部署的一致性
- 在开发和测试环境中,可以使用标签跳过配置来提高灵活性
- 对于完全离线的环境,建议建立内部镜像仓库并配置适当的镜像缓存策略
- 定期验证镜像的完整性和安全性,特别是在跳过标签解析的情况下
总结
KFServing 在离线环境中的部署问题揭示了 Knative 底层机制与特定使用场景之间的不匹配。通过理解其工作原理并合理配置,我们可以灵活地适应各种部署环境的需求。无论是使用镜像摘要还是调整 Knative 配置,都能有效解决离线环境中的部署问题,为机器学习模型的部署提供更大的灵活性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00