Kubeflow KFServing 在离线环境中部署 InferenceService 的解决方案
问题背景
在 Kubernetes 环境中使用 Kubeflow KFServing 部署机器学习推理服务时,用户遇到了一个典型问题:当集群处于离线环境(无互联网连接)时,即使已经预先加载了所需的容器镜像,InferenceService 仍然无法正常启动。系统会错误地尝试从外部镜像仓库拉取镜像,导致服务部署失败。
问题分析
经过深入排查,发现这个问题与 Knative 的工作机制密切相关。KFServing 底层使用了 Knative Serving 来实现无服务器(Serverless)模式,而 Knative 有一个默认行为:它会尝试将镜像标签(tag)解析为具体的镜像摘要(digest)。这个解析过程需要访问外部的容器镜像仓库服务。
具体表现为:
- 用户已经通过
ctr images import将镜像导入到 containerd 中 - 在 Deployment 中可以直接使用这些本地镜像
- 但在 InferenceService 中,Knative 仍然会尝试连接外部仓库进行标签解析
- 在离线环境中,这种外部连接会失败,导致服务无法启动
解决方案
方法一:使用镜像摘要而非标签
最直接的解决方案是使用镜像的完整摘要(digest)而非标签来指定镜像。这样可以避免 Knative 进行标签解析的步骤。例如:
image: "yurkoff/torchserve-kfs@sha256:1b771d7c0c2d26f78e892997cb00e6051c77cf3654827c4715aa5a502267ee76"
方法二:配置 Knative 跳过特定仓库的标签解析
对于需要继续使用标签的场景,可以修改 Knative 的配置,使其跳过对特定镜像仓库的标签解析:
- 编辑 Knative Serving 的 ConfigMap:
kubectl edit configmap config-deployment -n knative-serving
- 添加或修改
registries-skipping-tag-resolving配置项,包含需要跳过的仓库域名:
data:
registries-skipping-tag-resolving: "kind.local,ko.local,dev.local,index.docker.io"
这个配置告诉 Knative 不要尝试解析这些仓库的镜像标签,直接使用本地已有的镜像。
技术原理
Knative 的标签解析机制设计初衷是为了确保部署的确定性和可重复性。通过将易变的标签解析为不可变的摘要,可以保证每次部署使用的都是完全相同的镜像版本。然而,在离线环境中,这种机制反而成为了障碍。
修改 registries-skipping-tag-resolving 配置后,Knative 会:
- 对于匹配的镜像仓库,直接使用指定的标签
- 不尝试连接外部仓库获取摘要信息
- 依赖 Kubernetes 本身的镜像拉取策略(如 imagePullPolicy)来处理镜像获取
最佳实践建议
- 在生产环境中,推荐使用镜像摘要来确保部署的一致性
- 在开发和测试环境中,可以使用标签跳过配置来提高灵活性
- 对于完全离线的环境,建议建立内部镜像仓库并配置适当的镜像缓存策略
- 定期验证镜像的完整性和安全性,特别是在跳过标签解析的情况下
总结
KFServing 在离线环境中的部署问题揭示了 Knative 底层机制与特定使用场景之间的不匹配。通过理解其工作原理并合理配置,我们可以灵活地适应各种部署环境的需求。无论是使用镜像摘要还是调整 Knative 配置,都能有效解决离线环境中的部署问题,为机器学习模型的部署提供更大的灵活性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00