Kubeflow KFServing 在离线环境中部署 InferenceService 的解决方案
问题背景
在 Kubernetes 环境中使用 Kubeflow KFServing 部署机器学习推理服务时,用户遇到了一个典型问题:当集群处于离线环境(无互联网连接)时,即使已经预先加载了所需的容器镜像,InferenceService 仍然无法正常启动。系统会错误地尝试从外部镜像仓库拉取镜像,导致服务部署失败。
问题分析
经过深入排查,发现这个问题与 Knative 的工作机制密切相关。KFServing 底层使用了 Knative Serving 来实现无服务器(Serverless)模式,而 Knative 有一个默认行为:它会尝试将镜像标签(tag)解析为具体的镜像摘要(digest)。这个解析过程需要访问外部的容器镜像仓库服务。
具体表现为:
- 用户已经通过
ctr images import将镜像导入到 containerd 中 - 在 Deployment 中可以直接使用这些本地镜像
- 但在 InferenceService 中,Knative 仍然会尝试连接外部仓库进行标签解析
- 在离线环境中,这种外部连接会失败,导致服务无法启动
解决方案
方法一:使用镜像摘要而非标签
最直接的解决方案是使用镜像的完整摘要(digest)而非标签来指定镜像。这样可以避免 Knative 进行标签解析的步骤。例如:
image: "yurkoff/torchserve-kfs@sha256:1b771d7c0c2d26f78e892997cb00e6051c77cf3654827c4715aa5a502267ee76"
方法二:配置 Knative 跳过特定仓库的标签解析
对于需要继续使用标签的场景,可以修改 Knative 的配置,使其跳过对特定镜像仓库的标签解析:
- 编辑 Knative Serving 的 ConfigMap:
kubectl edit configmap config-deployment -n knative-serving
- 添加或修改
registries-skipping-tag-resolving配置项,包含需要跳过的仓库域名:
data:
registries-skipping-tag-resolving: "kind.local,ko.local,dev.local,index.docker.io"
这个配置告诉 Knative 不要尝试解析这些仓库的镜像标签,直接使用本地已有的镜像。
技术原理
Knative 的标签解析机制设计初衷是为了确保部署的确定性和可重复性。通过将易变的标签解析为不可变的摘要,可以保证每次部署使用的都是完全相同的镜像版本。然而,在离线环境中,这种机制反而成为了障碍。
修改 registries-skipping-tag-resolving 配置后,Knative 会:
- 对于匹配的镜像仓库,直接使用指定的标签
- 不尝试连接外部仓库获取摘要信息
- 依赖 Kubernetes 本身的镜像拉取策略(如 imagePullPolicy)来处理镜像获取
最佳实践建议
- 在生产环境中,推荐使用镜像摘要来确保部署的一致性
- 在开发和测试环境中,可以使用标签跳过配置来提高灵活性
- 对于完全离线的环境,建议建立内部镜像仓库并配置适当的镜像缓存策略
- 定期验证镜像的完整性和安全性,特别是在跳过标签解析的情况下
总结
KFServing 在离线环境中的部署问题揭示了 Knative 底层机制与特定使用场景之间的不匹配。通过理解其工作原理并合理配置,我们可以灵活地适应各种部署环境的需求。无论是使用镜像摘要还是调整 Knative 配置,都能有效解决离线环境中的部署问题,为机器学习模型的部署提供更大的灵活性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00