TorchMetrics中实现分布式训练时保持Autograd图的技术解析
2025-07-03 03:46:53作者:苗圣禹Peter
背景介绍
在PyTorch Lightning框架中使用自定义的TorchMetrics Metric作为损失函数时,开发者经常会遇到分布式数据并行(DDP)训练场景下的梯度传播问题。特别是在使用dist_sync_on_step=True参数时,默认情况下梯度信息会在all_gather操作中丢失,这会影响模型的训练效果。
问题本质
当在DDP模式下使用TorchMetrics时,Metric的forward()方法会触发一系列同步操作:
- 调用
_forward_reduce_state_update() - 进而调用被
_wrap_compute()包装的compute()函数 - 执行
sync()操作 - 最终调用
_sync_dist()
这个同步过程使用了torchmetrics.utilities.distributed.gather_all_tensors函数,而其中的_simple_gather_all_tensors实现会导致原始张量的autograd图信息丢失。
技术解决方案
核心问题在于_simple_gather_all_tensors函数的实现方式。原始实现如下:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
return gathered_result
这种实现方式会导致输入的result张量的autograd图信息丢失。解决方案是在all_gather操作后,显式地将当前进程的原始结果重新赋值给对应的位置:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
gathered_result[torch.distributed.get_rank(group)] = result
return gathered_result
技术原理
这个修改的关键点在于:
all_gather操作会将各进程的result收集到gathered_result中- 但收集后的张量会丢失原始的计算图信息
- 通过显式地将当前进程的原始
result(仍保有autograd图)重新赋值给gathered_result对应位置 - 这样在后续计算中,梯度可以正确传播
应用场景
这种技术特别适用于以下场景:
- 批处理数据大小不均匀的情况
- 需要保持原始损失函数数学定义准确性的场景
- 使用自定义Metric作为损失函数的分布式训练
性能考量
虽然这种修改能保持autograd图,但也需要考虑:
- 内存使用会增加,因为需要保留原始计算图
- 同步操作的开销仍然存在
- 在梯度计算时可能会有额外的内存峰值
总结
在TorchMetrics中实现分布式训练时保持autograd图是一个常见需求,特别是在使用自定义Metric作为损失函数时。通过修改_simple_gather_all_tensors函数的实现,可以有效地解决梯度传播问题,同时保持分布式训练的正确性。这种技术为处理不均匀批处理大小等复杂场景提供了可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
282
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
272
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871