TorchMetrics中实现分布式训练时保持Autograd图的技术解析
2025-07-03 12:23:40作者:苗圣禹Peter
背景介绍
在PyTorch Lightning框架中使用自定义的TorchMetrics Metric作为损失函数时,开发者经常会遇到分布式数据并行(DDP)训练场景下的梯度传播问题。特别是在使用dist_sync_on_step=True参数时,默认情况下梯度信息会在all_gather操作中丢失,这会影响模型的训练效果。
问题本质
当在DDP模式下使用TorchMetrics时,Metric的forward()方法会触发一系列同步操作:
- 调用
_forward_reduce_state_update() - 进而调用被
_wrap_compute()包装的compute()函数 - 执行
sync()操作 - 最终调用
_sync_dist()
这个同步过程使用了torchmetrics.utilities.distributed.gather_all_tensors函数,而其中的_simple_gather_all_tensors实现会导致原始张量的autograd图信息丢失。
技术解决方案
核心问题在于_simple_gather_all_tensors函数的实现方式。原始实现如下:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
return gathered_result
这种实现方式会导致输入的result张量的autograd图信息丢失。解决方案是在all_gather操作后,显式地将当前进程的原始结果重新赋值给对应的位置:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
gathered_result[torch.distributed.get_rank(group)] = result
return gathered_result
技术原理
这个修改的关键点在于:
all_gather操作会将各进程的result收集到gathered_result中- 但收集后的张量会丢失原始的计算图信息
- 通过显式地将当前进程的原始
result(仍保有autograd图)重新赋值给gathered_result对应位置 - 这样在后续计算中,梯度可以正确传播
应用场景
这种技术特别适用于以下场景:
- 批处理数据大小不均匀的情况
- 需要保持原始损失函数数学定义准确性的场景
- 使用自定义Metric作为损失函数的分布式训练
性能考量
虽然这种修改能保持autograd图,但也需要考虑:
- 内存使用会增加,因为需要保留原始计算图
- 同步操作的开销仍然存在
- 在梯度计算时可能会有额外的内存峰值
总结
在TorchMetrics中实现分布式训练时保持autograd图是一个常见需求,特别是在使用自定义Metric作为损失函数时。通过修改_simple_gather_all_tensors函数的实现,可以有效地解决梯度传播问题,同时保持分布式训练的正确性。这种技术为处理不均匀批处理大小等复杂场景提供了可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355