TorchMetrics中实现分布式训练时保持Autograd图的技术解析
2025-07-03 00:39:07作者:苗圣禹Peter
背景介绍
在PyTorch Lightning框架中使用自定义的TorchMetrics Metric作为损失函数时,开发者经常会遇到分布式数据并行(DDP)训练场景下的梯度传播问题。特别是在使用dist_sync_on_step=True
参数时,默认情况下梯度信息会在all_gather
操作中丢失,这会影响模型的训练效果。
问题本质
当在DDP模式下使用TorchMetrics时,Metric的forward()
方法会触发一系列同步操作:
- 调用
_forward_reduce_state_update()
- 进而调用被
_wrap_compute()
包装的compute()
函数 - 执行
sync()
操作 - 最终调用
_sync_dist()
这个同步过程使用了torchmetrics.utilities.distributed.gather_all_tensors
函数,而其中的_simple_gather_all_tensors
实现会导致原始张量的autograd图信息丢失。
技术解决方案
核心问题在于_simple_gather_all_tensors
函数的实现方式。原始实现如下:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
return gathered_result
这种实现方式会导致输入的result
张量的autograd图信息丢失。解决方案是在all_gather操作后,显式地将当前进程的原始结果重新赋值给对应的位置:
def _simple_gather_all_tensors(result: Tensor, group: Any, world_size: int) -> List[Tensor]:
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
torch.distributed.all_gather(gathered_result, result, group)
gathered_result[torch.distributed.get_rank(group)] = result
return gathered_result
技术原理
这个修改的关键点在于:
all_gather
操作会将各进程的result
收集到gathered_result
中- 但收集后的张量会丢失原始的计算图信息
- 通过显式地将当前进程的原始
result
(仍保有autograd图)重新赋值给gathered_result
对应位置 - 这样在后续计算中,梯度可以正确传播
应用场景
这种技术特别适用于以下场景:
- 批处理数据大小不均匀的情况
- 需要保持原始损失函数数学定义准确性的场景
- 使用自定义Metric作为损失函数的分布式训练
性能考量
虽然这种修改能保持autograd图,但也需要考虑:
- 内存使用会增加,因为需要保留原始计算图
- 同步操作的开销仍然存在
- 在梯度计算时可能会有额外的内存峰值
总结
在TorchMetrics中实现分布式训练时保持autograd图是一个常见需求,特别是在使用自定义Metric作为损失函数时。通过修改_simple_gather_all_tensors
函数的实现,可以有效地解决梯度传播问题,同时保持分布式训练的正确性。这种技术为处理不均匀批处理大小等复杂场景提供了可靠的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44