X-AnyLabeling中YOLO-Pose格式导出问题解析与解决方案
2025-06-08 03:46:00作者:翟江哲Frasier
背景介绍
X-AnyLabeling是一款功能强大的图像标注工具,支持多种标注格式的导出。在实际使用过程中,用户可能会遇到将带有旋转框和关键点的标注导出为YOLO-Pose格式时出现错误的问题。本文将深入分析这一问题的原因,并提供完整的解决方案。
问题现象
当用户完成图像标注(包含旋转框和关键点)并尝试导出为YOLO-Pose格式时,可能会遇到"int() argument must be a string, a bytes-like object or a number, not 'NoneType'"的错误提示。这种情况通常发生在用户已经正确编写了pose.yaml配置文件后。
根本原因分析
经过深入研究,我们发现这个问题的核心在于YOLO-Pose格式的特殊要求:
- 关联性要求:YOLO-Pose格式要求每个关键点或关键点组必须与一个检测框相关联
- group_id缺失:当标注时没有为检测框和关键点设置相同的group_id时,系统无法建立这种关联关系
- 格式规范:YOLO-Pose的原始设计是先进行边界框检测,然后在边界框内检测关键点
解决方案详解
正确标注步骤
-
设置group_id:
- 为同一对象的检测框和关键点设置相同的group_id
- 在X-AnyLabeling界面中,可以通过属性面板设置group_id
-
配置文件编写:
has_visible: false classes: instrument: - center - point - min - max -
导出验证:
- 确保所有关键点都有对应的检测框
- 检查导出的JSON文件中group_id字段是否已正确填充
批量修复方案
对于已经完成标注但缺少group_id的情况,可以使用Python脚本批量修复:
import json
import os
# 定义group_id映射关系
group_id_mapping = {
"LU_box": 1, "LM_box": 2, "LL_box": 3,
"RL_box": 4, "RM_box": 5, "RU_box": 6,
"LU_point1": 1, "LU_point2": 1, "LU_point3": 1,
# 其他关键点映射...
}
input_folder = "标注文件路径"
for filename in os.listdir(input_folder):
if filename.endswith('.json'):
json_path = os.path.join(input_folder, filename)
with open(json_path, 'r', encoding='utf-8') as file:
json_data = json.load(file)
for shape in json_data['shapes']:
label = shape['label']
if label in group_id_mapping:
shape['group_id'] = group_id_mapping[label]
with open(json_path, 'w', encoding='utf-8') as file:
json.dump(json_data, file, indent=4)
技术原理深入
YOLO-Pose格式规范
YOLO-Pose格式每行数据包含以下信息:
- 边界框信息:x中心坐标、y中心坐标、宽度、高度、置信度
- 关键点信息:每个关键点的x坐标、y坐标、可见性/置信度
这种格式要求每个关键点都必须归属于一个边界框,这是通过group_id实现的关联。
多类别关键点检测
关于YOLO-Pose在多类别关键点检测中的应用,需要注意:
- 单一模型方案:可以用于检测一个大物体的多个部位关键点
- 实现方式:先检测各部位边界框,再在各边界框内检测关键点
- 性能考虑:对于复杂场景,可能需要权衡模型精度和复杂度
最佳实践建议
-
标注时规范:
- 始终为相关标注设置group_id
- 保持标注命名一致性
-
工作流程优化:
- 先标注所有边界框
- 再标注各边界框内的关键点
- 最后统一检查group_id设置
-
配置文件管理:
- 维护清晰的pose.yaml文件
- 记录各group_id对应的实际含义
总结
通过本文的分析,我们了解到X-AnyLabeling中YOLO-Pose格式导出的关键点在于正确设置group_id以建立检测框与关键点的关联关系。掌握这一原理后,用户可以高效地完成复杂标注任务,并顺利导出为YOLO-Pose格式。对于已经完成的标注,也可以通过脚本批量修复group_id问题,大大提高工作效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896