ACV:为机器学习模型提供强大的解释能力
2024-10-10 20:35:51作者:冯梦姬Eddie
项目介绍
Active Coalition of Variables (ACV) 是一个旨在解释任何机器学习模型或数据的Python库。ACV不仅能够为任何模型或数据提供局部基于规则的解释,还提供了对树模型(如XGBoost、LightGBM、CatBoost等)的Shapley值的更准确估计。与传统的TreeSHAP相比,ACV的Shapley值估计更为精确,并且能够正确处理编码后的分类变量(如One Hot或Dummy编码)。
ACV的解释方法主要分为两类:模型无关的解释(Agnostic Explanations)和基于树模型的解释(Tree-based Explanations)。通过这些方法,用户可以深入理解模型的决策过程,从而更好地进行模型调试和优化。
项目技术分析
ACV的核心技术包括:
- Same Decision Probability (SDP):用于计算变量的同决策概率,帮助用户理解在固定某些变量时,模型的预测是否会发生变化。
- Sufficient Explanations:通过计算最小充分解释集,帮助用户识别哪些变量对模型的预测结果最为关键。
- Shapley Values:ACV提供了对树模型的Shapley值的更准确估计,并且能够正确处理编码后的分类变量。
ACV的实现依赖于Cython扩展,因此在安装时需要注意编译环境的支持。对于OSX用户,需要使用支持多线程的gcc编译器;对于Windows用户,则需要安装MinGW或Microsoft的Visual C++。
项目及技术应用场景
ACV适用于以下场景:
- 模型调试与优化:通过ACV提供的局部解释和Shapley值,用户可以深入理解模型的决策过程,识别模型中的关键变量,从而进行针对性的优化。
- 数据分析与探索:ACV可以帮助用户理解数据的内在结构,识别数据中的关键特征,从而更好地进行数据分析和探索。
- 模型解释与透明性:在需要向非技术用户解释模型决策过程的场景中,ACV提供的可视化工具和解释方法能够帮助用户更好地理解模型的行为。
项目特点
ACV具有以下显著特点:
- 广泛的适用性:ACV不仅适用于树模型,还可以解释任何类型的机器学习模型和数据。
- 高精度Shapley值估计:ACV提供的Shapley值估计比传统的TreeSHAP更为准确,特别是在处理依赖变量时。
- 支持编码后的分类变量:ACV能够正确处理编码后的分类变量,确保Shapley值计算的准确性。
- 丰富的解释方法:ACV提供了多种解释方法,包括SDP、Sufficient Explanations和Shapley Values,满足不同场景下的解释需求。
- 易于集成与使用:ACV提供了简洁的API和WebApp接口,用户可以轻松地将ACV集成到现有的机器学习工作流中,并通过WebApp进行可视化分析。
结语
ACV作为一个强大的机器学习模型解释工具,不仅提供了高精度的Shapley值估计,还支持多种解释方法,帮助用户深入理解模型的决策过程。无论是在模型调试、数据分析还是模型解释方面,ACV都能为用户提供有力的支持。如果你正在寻找一个能够全面解释机器学习模型的工具,ACV无疑是一个值得尝试的选择。
立即安装ACV,开启你的模型解释之旅:
$ pip install acv-exp
更多详细信息,请访问ACV GitHub仓库。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660