Serilog实现缓存式日志记录方案解析
2025-05-29 01:14:35作者:江焘钦
背景介绍
在分布式系统和任务调度场景中,我们经常需要对任务的执行过程进行详细日志记录,但又不希望所有日志都立即持久化。典型的应用场景是:当任务成功完成时才记录日志,而任务失败时则丢弃相关日志记录。这种"选择性日志记录"模式与常见的审计日志正好相反——不是立即提交日志而是延迟到特定条件满足时才提交。
传统实现方式的局限性
传统实现通常采用自定义日志框架或MEL(微软扩展日志)的变通方案,但这些方法存在几个明显问题:
- 代码侵入性强,与业务逻辑耦合度高
- 难以与现代化日志系统(如Serilog)集成
- 缺乏对结构化日志的支持
- 扩展性和维护性差
Serilog解决方案设计
基于Serilog的灵活架构,我们可以设计出优雅的缓存式日志方案。核心思路是利用Serilog的管道机制和上下文特性,构建一个日志缓存层。
方案一:自定义ILogger实现
通过实现自定义的ILogger接口,我们可以拦截所有日志调用并将其暂存于内存中:
public class BufferingLogger : ILogger
{
private readonly List<LogEvent> _buffer = new();
private readonly ILogger _targetLogger;
public BufferingLogger(ILogger targetLogger)
{
_targetLogger = targetLogger;
}
public void Write(LogEvent logEvent)
{
_buffer.Add(logEvent);
}
public void Flush()
{
foreach (var logEvent in _buffer)
{
_targetLogger.Write(logEvent);
}
_buffer.Clear();
}
// 其他ILogger成员实现...
}
方案二:自定义Sink包装器
另一种更符合Serilog哲学的方式是创建自定义Sink,将日志事件先缓存再批量处理:
public class BufferingSink : ILogEventSink
{
private readonly List<LogEvent> _buffer = new();
private readonly ILogEventSink _targetSink;
public BufferingSink(ILogEventSink targetSink)
{
_targetSink = targetSink;
}
public void Emit(LogEvent logEvent)
{
_buffer.Add(logEvent);
}
public void Flush()
{
foreach (var logEvent in _buffer)
{
_targetSink.Emit(logEvent);
}
_buffer.Clear();
}
}
实现细节与优化
上下文关联
在实际应用中,我们需要确保日志缓存与特定任务或上下文关联。可以利用Serilog的LogContext特性:
using (LogContext.PushProperty("JobId", jobId))
{
// 任务执行期间的日志
}
线程安全考虑
在多线程环境下,缓存操作需要保证线程安全:
private readonly ConcurrentQueue<LogEvent> _buffer = new();
资源释放
为防止内存泄漏,需要实现IDisposable接口并在适当时机清理资源。
实际应用示例
以下是一个完整的任务调度场景实现:
public class JobRunner
{
private readonly ILogger _baseLogger;
public JobRunner(ILogger baseLogger)
{
_baseLogger = baseLogger;
}
public void RunJob(Action<ILogger> jobAction)
{
var buffer = new BufferingLogger(_baseLogger);
try
{
jobAction(buffer);
buffer.Flush(); // 任务成功,刷出日志
}
catch
{
// 任务失败,丢弃日志
}
}
}
性能考量
- 内存管理:对于长时间运行的任务,应设置缓存上限
- 批量处理:大量日志一次性写入可能影响性能,可考虑分批次处理
- 异常处理:确保日志刷出过程中的异常不会影响主业务流程
扩展思考
这种缓存式日志模式还可应用于以下场景:
- 事务性操作:只有事务提交后才记录相关日志
- 批处理系统:整批数据处理完成后再统一记录日志
- 复杂工作流:在关键节点确认后才持久化过程日志
总结
通过Serilog的灵活架构,我们可以构建出既保持结构化日志优势,又能实现条件性日志记录的解决方案。相比传统方案,这种实现更加优雅、可维护,且能与Serilog丰富的生态系统无缝集成。开发者可以根据具体需求选择最适合的实现方式,平衡性能、可靠性和开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30