Comet-LLM 1.4.3版本发布:增强规则引擎与Python执行沙箱能力
Comet-LLM是一个专注于大型语言模型(LLM)应用开发与监控的开源平台。它提供了从提示工程、模型评估到生产监控的全套工具链,帮助开发者构建可靠的LLM应用。本次1.4.3版本带来了多项重要更新,特别是在规则引擎日志和Python代码执行沙箱方面的增强。
规则引擎日志系统升级
新版本对自动化规则评估系统进行了重要改进,主要体现在:
-
规则日志表创建:新增了专门的规则日志存储表,使得系统能够更结构化地记录规则执行过程。这种设计便于后续的日志查询和分析,特别是在复杂的规则评估场景下。
-
ClickHouse日志支持:实现了面向用户的ClickHouse日志系统。ClickHouse作为高性能的列式数据库,特别适合处理大量的日志数据。这一改进使得用户能够:
- 高效查询历史规则执行记录
- 分析规则触发的模式和频率
- 快速定位问题发生的环节
-
日志查看界面优化:前端增加了查看完整日志的按钮,用户可以直接在新标签页中浏览特定在线评分规则的所有相关日志,大大提升了调试效率。
Python代码执行沙箱
1.4.3版本引入了一个重要的安全特性——Python代码执行沙箱:
-
Docker沙箱原型:提供了基于Docker的Python代码执行隔离环境,确保用户提交的代码能够在安全可控的环境中运行。这种设计有效防止了恶意代码对主系统的破坏。
-
独立Python后端服务:新增了专门的Python后端服务组件,负责:
- 代码执行环境的生命周期管理
- 资源隔离与限制
- 执行结果的收集与返回
-
容器化部署支持:该服务已集成到项目的Docker Compose和Helm Chart配置中,方便用户在各种部署环境中使用这一功能。
其他重要改进
-
模型提供商集成增强:
- 修复了模型列表获取的问题
- 完善了Anthropic模型在Playground中的集成
- 改进了Gemini模型的流式处理支持
-
成本追踪功能:SDK现在支持手动设置单个span的成本,为精细化的成本监控提供了更多灵活性。
-
文档与示例更新:
- 新增了本地运行指南
- 优化了快速入门页面的代码片段
- 添加了Guardrails集成文档
- 更新了RAG评估示例
-
性能优化:
- 在线评分服务改为了基于Redis的分布式架构
- 改进了演示项目脚本的数据处理效率
开发者体验提升
本次更新还包含多项提升开发者体验的改进:
-
实验日志记录:Playground现在会自动记录实验过程,方便开发者回溯和复现结果。
-
注释功能增强:新增了专门的评论相关API端点,支持更丰富的协作场景。
-
前端交互优化:
- 移除了"Get Started"部分的关闭按钮
- 为PC端添加了自定义滚动悬停效果
- 优化了规则弹出框中自动完成组件的行为
Comet-LLM 1.4.3版本的这些改进,使得平台在安全性、可观测性和用户体验方面都有了显著提升,特别是为需要执行自定义代码的LLM应用场景提供了更强大的支持基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00