Lichess移动端棋盘绘图功能的全局化改进
2025-07-10 09:08:30作者:薛曦旖Francesca
背景与现状分析
Lichess作为一款开源的在线国际象棋平台,其移动端应用lichess-org/mobile提供了丰富的棋盘交互功能。其中,绘图功能(包括绘制箭头、形状等)是用户进行棋局分析和交流的重要工具。然而,当前实现存在一个明显的局限性:绘图功能在不同场景下的可用性不一致。
目前系统存在三种主要的棋盘交互模式:
- 分析模式:用户可以在任意位置绘制图形,不受当前回合限制
- 实时对局模式:仅允许在当前局面绘制图形
- 对局回放模式:完全禁用绘图功能
这种不一致性影响了用户体验的连贯性,特别是当用户需要在对局结束后立即进行复盘分析时,必须手动切换到分析模式才能使用绘图工具。
技术实现方案
要实现绘图功能的全局化,需要考虑以下几个技术层面:
1. 绘图状态管理
核心挑战在于统一管理绘图功能的状态。建议采用以下架构:
class BoardViewController {
private var drawingEnabled: Boolean = true // 全局绘图开关
private var currentDrawingMode: DrawingMode = DrawingMode.ARROW // 当前绘图模式
fun handleTouchEvent(event: MotionEvent) {
if (drawingEnabled) {
processDrawing(event)
} else {
processMove(event)
}
}
}
2. 棋盘事件处理
需要重构棋盘的事件处理逻辑,将绘图交互与走棋交互解耦。可以采用策略模式:
interface BoardInputHandler {
fun handleTouchEvent(event: MotionEvent)
}
class DrawingHandler : BoardInputHandler {
// 实现绘图逻辑
}
class MoveHandler : BoardInputHandler {
// 实现走棋逻辑
}
3. 上下文感知
系统需要根据当前场景自动选择合适的交互模式:
- 分析模式:同时启用走棋和绘图
- 实时对局:仅允许当前回合方走棋,但允许双方绘图
- 对局回放:禁用走棋但启用绘图
实现细节优化
绘图数据存储
绘图数据应与棋局状态解耦,采用独立的数据结构存储:
data class BoardAnnotation(
val arrows: List<Arrow>,
val shapes: List<Shape>,
val comments: List<Comment>
)
class GameState {
val moves: List<Move>
val annotations: Map<Int, BoardAnnotation> // 按move index存储注释
}
性能考虑
在实现全局绘图功能时,需要注意:
- 绘图数据的内存占用
- 频繁重绘的性能开销
- 触摸事件的响应延迟
可以采用以下优化策略:
- 使用轻量级数据结构存储绘图元素
- 实现脏矩形技术减少重绘区域
- 对触摸事件进行适当节流
用户体验改进
全局绘图功能的实现将带来以下用户体验提升:
- 一致性:在所有棋盘场景下提供相同的绘图交互方式
- 即时性:对局结束后无需切换模式即可开始分析
- 灵活性:在回放对局时能够随时添加注释和标记
兼容性与迁移
考虑到现有用户的使用习惯,改进应保持向后兼容:
- 保留原有的分析模式专用绘图功能
- 新增设置选项允许用户禁用全局绘图
- 确保现有的绘图数据能够在新旧版本间无缝迁移
总结
Lichess移动端的全局绘图功能改进是一项提升用户体验的重要工作。通过重构绘图系统的架构设计,统一不同场景下的交互模式,可以为用户提供更加流畅和一致的分析体验。技术实现上需要关注状态管理、事件处理和性能优化等关键点,同时保持与现有功能的兼容性。这一改进将显著增强平台的教学和分析能力,特别是对于需要即时标注和分享棋局的用户场景。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.18 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534

React Native鸿蒙化仓库
C++
188
265

deepin linux kernel
C
22
6

openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45