Lichess移动端棋盘绘图功能的全局化改进
2025-07-10 18:06:06作者:薛曦旖Francesca
背景与现状分析
Lichess作为一款开源的在线国际象棋平台,其移动端应用lichess-org/mobile提供了丰富的棋盘交互功能。其中,绘图功能(包括绘制箭头、形状等)是用户进行棋局分析和交流的重要工具。然而,当前实现存在一个明显的局限性:绘图功能在不同场景下的可用性不一致。
目前系统存在三种主要的棋盘交互模式:
- 分析模式:用户可以在任意位置绘制图形,不受当前回合限制
- 实时对局模式:仅允许在当前局面绘制图形
- 对局回放模式:完全禁用绘图功能
这种不一致性影响了用户体验的连贯性,特别是当用户需要在对局结束后立即进行复盘分析时,必须手动切换到分析模式才能使用绘图工具。
技术实现方案
要实现绘图功能的全局化,需要考虑以下几个技术层面:
1. 绘图状态管理
核心挑战在于统一管理绘图功能的状态。建议采用以下架构:
class BoardViewController {
private var drawingEnabled: Boolean = true // 全局绘图开关
private var currentDrawingMode: DrawingMode = DrawingMode.ARROW // 当前绘图模式
fun handleTouchEvent(event: MotionEvent) {
if (drawingEnabled) {
processDrawing(event)
} else {
processMove(event)
}
}
}
2. 棋盘事件处理
需要重构棋盘的事件处理逻辑,将绘图交互与走棋交互解耦。可以采用策略模式:
interface BoardInputHandler {
fun handleTouchEvent(event: MotionEvent)
}
class DrawingHandler : BoardInputHandler {
// 实现绘图逻辑
}
class MoveHandler : BoardInputHandler {
// 实现走棋逻辑
}
3. 上下文感知
系统需要根据当前场景自动选择合适的交互模式:
- 分析模式:同时启用走棋和绘图
- 实时对局:仅允许当前回合方走棋,但允许双方绘图
- 对局回放:禁用走棋但启用绘图
实现细节优化
绘图数据存储
绘图数据应与棋局状态解耦,采用独立的数据结构存储:
data class BoardAnnotation(
val arrows: List<Arrow>,
val shapes: List<Shape>,
val comments: List<Comment>
)
class GameState {
val moves: List<Move>
val annotations: Map<Int, BoardAnnotation> // 按move index存储注释
}
性能考虑
在实现全局绘图功能时,需要注意:
- 绘图数据的内存占用
- 频繁重绘的性能开销
- 触摸事件的响应延迟
可以采用以下优化策略:
- 使用轻量级数据结构存储绘图元素
- 实现脏矩形技术减少重绘区域
- 对触摸事件进行适当节流
用户体验改进
全局绘图功能的实现将带来以下用户体验提升:
- 一致性:在所有棋盘场景下提供相同的绘图交互方式
- 即时性:对局结束后无需切换模式即可开始分析
- 灵活性:在回放对局时能够随时添加注释和标记
兼容性与迁移
考虑到现有用户的使用习惯,改进应保持向后兼容:
- 保留原有的分析模式专用绘图功能
- 新增设置选项允许用户禁用全局绘图
- 确保现有的绘图数据能够在新旧版本间无缝迁移
总结
Lichess移动端的全局绘图功能改进是一项提升用户体验的重要工作。通过重构绘图系统的架构设计,统一不同场景下的交互模式,可以为用户提供更加流畅和一致的分析体验。技术实现上需要关注状态管理、事件处理和性能优化等关键点,同时保持与现有功能的兼容性。这一改进将显著增强平台的教学和分析能力,特别是对于需要即时标注和分享棋局的用户场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217