ISPC项目中的VNNI指令支持探讨
背景介绍
ISPC(Intel SPMD Program Compiler)是一款面向CPU的高性能并行编程编译器,它能够生成高效的SIMD代码。在机器学习和卷积计算领域,利用专用指令集如VNNI(Vector Neural Network Instructions)可以显著提升性能。本文将深入探讨在ISPC中支持VNNI指令的技术方案。
VNNI指令概述
VNNI是Intel推出的AI加速指令集,主要用于加速神经网络计算中的矩阵乘法和点积运算。与AMX(Advanced Matrix Extensions)不同,VNNI操作的是标准的向量类型,这使得它在ISPC中的集成相对简单。
VNNI指令支持多种数据类型组合,包括:
- 8位整数(int8/uint8)
- 16位整数(int16/uint16)
- 16位浮点数(bfloat16)
ISPC中的实现方案
初始设计思路
最初提出的设计方案是使用统一的函数接口,通过枚举参数指定数据类型:
enum ISPC_PACKED_FACTOR {
ISPC_PACKED_FACTOR_BYTE, // int8/uint8
ISPC_PACKED_FACTOR_WORD, // int16/uint16
};
varying int32 dot_acc(varying int32 src, varying int32 a, varying int32 b, uniform ISPC_PACKED_FACTOR f);
这种设计的优点是可以支持未来可能添加的新数据类型(如int4或int2),而无需修改语言本身。编译器会优化掉uniform参数,不会产生额外的控制流指令。
改进方案
经过讨论,更倾向于采用类似HLSL(High-Level Shader Language)的命名方案,将数据类型信息直接体现在函数名中:
varying uint32 dot4add_u8packed(varying uint32 a, varying uint32 b, varying uint32 acc);
varying int32 dot4add_i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
varying int32 dot4add_u8i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
这种命名方式更加直观,能够清晰地表达函数的操作和数据类型,特别是对于混合符号类型的操作(如u8i8)。
技术考量
-
数据类型打包:VNNI指令操作的是打包在32位整数中的小数据类型(如4个int8或2个int16)。ISPC函数参数使用uint32/int32来承载这些打包数据。
-
跨平台兼容性:设计方案考虑了不同硬件平台的特性,包括:
- Intel CPU(AVX/AVX512)
- Intel GPU(Gen12+)
- ARM架构
-
饱和运算支持:提供了带饱和处理的版本(如dot4add_u8packed_sat),这在信号处理和图像处理中尤为重要。
-
浮点支持:为bfloat16类型预留了扩展空间,未来可以添加类似dot2add_bf16packed的函数。
实现细节
在底层实现上,这些函数会直接映射到对应的VNNI指令。对于不支持VNNI指令的平台,ISPC会提供替代实现。例如:
dot4add_u8packed对应VPDPBUSD指令dot4add_i8packed对应VPDPBSSD指令dot4add_u8i8packed对应VPDPBUUD指令
总结
ISPC对VNNI指令的支持将显著提升在CPU上运行机器学习推理和卷积运算的性能。采用类似HLSL的命名方案既保持了API的清晰性,又提供了必要的灵活性。这一特性将使ISPC在AI和高性能计算领域更具竞争力。
未来,随着bfloat16等数据类型的支持,ISPC的VNNI功能将进一步扩展,为开发者提供更强大的工具来优化他们的高性能计算应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00