ISPC项目中的VNNI指令支持探讨
背景介绍
ISPC(Intel SPMD Program Compiler)是一款面向CPU的高性能并行编程编译器,它能够生成高效的SIMD代码。在机器学习和卷积计算领域,利用专用指令集如VNNI(Vector Neural Network Instructions)可以显著提升性能。本文将深入探讨在ISPC中支持VNNI指令的技术方案。
VNNI指令概述
VNNI是Intel推出的AI加速指令集,主要用于加速神经网络计算中的矩阵乘法和点积运算。与AMX(Advanced Matrix Extensions)不同,VNNI操作的是标准的向量类型,这使得它在ISPC中的集成相对简单。
VNNI指令支持多种数据类型组合,包括:
- 8位整数(int8/uint8)
- 16位整数(int16/uint16)
- 16位浮点数(bfloat16)
ISPC中的实现方案
初始设计思路
最初提出的设计方案是使用统一的函数接口,通过枚举参数指定数据类型:
enum ISPC_PACKED_FACTOR {
ISPC_PACKED_FACTOR_BYTE, // int8/uint8
ISPC_PACKED_FACTOR_WORD, // int16/uint16
};
varying int32 dot_acc(varying int32 src, varying int32 a, varying int32 b, uniform ISPC_PACKED_FACTOR f);
这种设计的优点是可以支持未来可能添加的新数据类型(如int4或int2),而无需修改语言本身。编译器会优化掉uniform参数,不会产生额外的控制流指令。
改进方案
经过讨论,更倾向于采用类似HLSL(High-Level Shader Language)的命名方案,将数据类型信息直接体现在函数名中:
varying uint32 dot4add_u8packed(varying uint32 a, varying uint32 b, varying uint32 acc);
varying int32 dot4add_i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
varying int32 dot4add_u8i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
这种命名方式更加直观,能够清晰地表达函数的操作和数据类型,特别是对于混合符号类型的操作(如u8i8)。
技术考量
-
数据类型打包:VNNI指令操作的是打包在32位整数中的小数据类型(如4个int8或2个int16)。ISPC函数参数使用uint32/int32来承载这些打包数据。
-
跨平台兼容性:设计方案考虑了不同硬件平台的特性,包括:
- Intel CPU(AVX/AVX512)
- Intel GPU(Gen12+)
- ARM架构
-
饱和运算支持:提供了带饱和处理的版本(如dot4add_u8packed_sat),这在信号处理和图像处理中尤为重要。
-
浮点支持:为bfloat16类型预留了扩展空间,未来可以添加类似dot2add_bf16packed的函数。
实现细节
在底层实现上,这些函数会直接映射到对应的VNNI指令。对于不支持VNNI指令的平台,ISPC会提供替代实现。例如:
dot4add_u8packed对应VPDPBUSD指令dot4add_i8packed对应VPDPBSSD指令dot4add_u8i8packed对应VPDPBUUD指令
总结
ISPC对VNNI指令的支持将显著提升在CPU上运行机器学习推理和卷积运算的性能。采用类似HLSL的命名方案既保持了API的清晰性,又提供了必要的灵活性。这一特性将使ISPC在AI和高性能计算领域更具竞争力。
未来,随着bfloat16等数据类型的支持,ISPC的VNNI功能将进一步扩展,为开发者提供更强大的工具来优化他们的高性能计算应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00