ISPC项目中的VNNI指令支持探讨
背景介绍
ISPC(Intel SPMD Program Compiler)是一款面向CPU的高性能并行编程编译器,它能够生成高效的SIMD代码。在机器学习和卷积计算领域,利用专用指令集如VNNI(Vector Neural Network Instructions)可以显著提升性能。本文将深入探讨在ISPC中支持VNNI指令的技术方案。
VNNI指令概述
VNNI是Intel推出的AI加速指令集,主要用于加速神经网络计算中的矩阵乘法和点积运算。与AMX(Advanced Matrix Extensions)不同,VNNI操作的是标准的向量类型,这使得它在ISPC中的集成相对简单。
VNNI指令支持多种数据类型组合,包括:
- 8位整数(int8/uint8)
- 16位整数(int16/uint16)
- 16位浮点数(bfloat16)
ISPC中的实现方案
初始设计思路
最初提出的设计方案是使用统一的函数接口,通过枚举参数指定数据类型:
enum ISPC_PACKED_FACTOR {
ISPC_PACKED_FACTOR_BYTE, // int8/uint8
ISPC_PACKED_FACTOR_WORD, // int16/uint16
};
varying int32 dot_acc(varying int32 src, varying int32 a, varying int32 b, uniform ISPC_PACKED_FACTOR f);
这种设计的优点是可以支持未来可能添加的新数据类型(如int4或int2),而无需修改语言本身。编译器会优化掉uniform参数,不会产生额外的控制流指令。
改进方案
经过讨论,更倾向于采用类似HLSL(High-Level Shader Language)的命名方案,将数据类型信息直接体现在函数名中:
varying uint32 dot4add_u8packed(varying uint32 a, varying uint32 b, varying uint32 acc);
varying int32 dot4add_i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
varying int32 dot4add_u8i8packed(varying uint32 a, varying uint32 b, varying int32 acc);
这种命名方式更加直观,能够清晰地表达函数的操作和数据类型,特别是对于混合符号类型的操作(如u8i8)。
技术考量
-
数据类型打包:VNNI指令操作的是打包在32位整数中的小数据类型(如4个int8或2个int16)。ISPC函数参数使用uint32/int32来承载这些打包数据。
-
跨平台兼容性:设计方案考虑了不同硬件平台的特性,包括:
- Intel CPU(AVX/AVX512)
- Intel GPU(Gen12+)
- ARM架构
-
饱和运算支持:提供了带饱和处理的版本(如dot4add_u8packed_sat),这在信号处理和图像处理中尤为重要。
-
浮点支持:为bfloat16类型预留了扩展空间,未来可以添加类似dot2add_bf16packed的函数。
实现细节
在底层实现上,这些函数会直接映射到对应的VNNI指令。对于不支持VNNI指令的平台,ISPC会提供替代实现。例如:
dot4add_u8packed
对应VPDPBUSD
指令dot4add_i8packed
对应VPDPBSSD
指令dot4add_u8i8packed
对应VPDPBUUD
指令
总结
ISPC对VNNI指令的支持将显著提升在CPU上运行机器学习推理和卷积运算的性能。采用类似HLSL的命名方案既保持了API的清晰性,又提供了必要的灵活性。这一特性将使ISPC在AI和高性能计算领域更具竞争力。
未来,随着bfloat16等数据类型的支持,ISPC的VNNI功能将进一步扩展,为开发者提供更强大的工具来优化他们的高性能计算应用。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









