MONAI教程项目中的ONNX模型导出与推理实践
2025-07-04 09:00:35作者:郁楠烈Hubert
在医学影像分析领域,MONAI框架因其专为医疗影像设计的强大功能而广受欢迎。本文将深入探讨如何在MONAI的3D脑肿瘤分割示例中集成ONNX支持,实现跨平台部署的完整技术方案。
背景与需求
现代医疗AI项目往往需要部署到多种硬件平台和操作系统环境。ONNX(Open Neural Network Exchange)作为一种开放的模型格式,能够有效解决框架间的兼容性问题。通过将MONAI训练的模型转换为ONNX格式,开发者可以:
- 实现训练框架与推理环境的解耦
- 利用ONNX Runtime进行高性能推理
- 支持跨平台部署(包括移动端和边缘设备)
技术实现方案
基于MONAI的brats_segmentation_3d示例,我们构建了完整的ONNX导出和推理流程:
1. 模型训练与验证
首先按照标准流程使用MONAI训练3D脑肿瘤分割模型。关键步骤包括:
- 数据准备与预处理
- 网络架构定义(通常使用UNet类3D分割网络)
- 损失函数配置(如DiceLoss)
- 训练过程监控
2. ONNX模型导出
训练完成后,使用MONAI的模型转换工具将PyTorch模型导出为ONNX格式:
import torch
from monai.networks.nets import UNet
# 加载训练好的模型
model = UNet(...)
model.load_state_dict(torch.load("model.pth"))
# 准备示例输入张量
dummy_input = torch.randn(1, 4, 128, 128, 128) # 假设输入为4模态的128x128x128体积
# 导出ONNX模型
torch.onnx.export(
model,
dummy_input,
"model.onnx",
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {0: "batch_size"},
"output": {0: "batch_size"}
}
)
3. ONNX Runtime推理
使用ONNX Runtime加载导出的模型进行推理:
import onnxruntime as ort
import numpy as np
# 创建推理会话
ort_session = ort.InferenceSession("model.onnx")
# 准备输入数据
input_data = np.random.randn(1, 4, 128, 128, 128).astype(np.float32)
# 运行推理
outputs = ort_session.run(
None,
{"input": input_data}
)
关键技术考量
在实际实现过程中,有几个关键点需要特别注意:
-
动态轴配置:医疗影像的批量大小可能变化,需要正确设置dynamic_axes参数
-
后处理兼容性:确保ONNX模型输出与原始MONAI模型的输出维度一致
-
算子支持:验证所有MONAI使用的操作在ONNX中都有对应实现
-
性能优化:可以尝试启用ONNX Runtime的图优化和硬件加速功能
实际应用价值
该方案为医疗AI项目带来了显著优势:
- 部署灵活性:模型可在各种支持ONNX的环境中运行
- 性能保证:ONNX Runtime针对不同硬件进行了深度优化
- 维护简便:统一的模型格式简化了版本管理和更新流程
总结
通过将MONAI模型导出为ONNX格式,开发者可以构建更加灵活、高效的医疗影像分析系统。本文展示的方案不仅适用于脑肿瘤分割任务,也可以推广到其他医学影像分析场景,为医疗AI的落地应用提供了可靠的技术路径。
未来,随着ONNX生态的不断完善,这种跨框架的模型部署方式将在医疗AI领域发挥越来越重要的作用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885