LMDeploy部署GLM4-9b-chat模型时的上下文长度配置问题解析
2025-06-03 22:12:43作者:廉皓灿Ida
问题背景
在使用LMDeploy 0.6.5版本部署GLM4-9b-chat大语言模型时,开发者遇到了一个关于上下文长度限制的问题。当尝试发送超长提示词时,服务返回了异常响应,提示token数量超出限制。
问题现象
开发者启动服务时使用了以下命令:
lmdeploy serve api_server --server-name 0.0.0.0 --server-port 8000 --backend turbomind --dtype auto --tp 1 --cache-max-entry-count 0.3 --model-name glm-4-9b-chat --disable-fastapi-docs --log-level INFO /models/glm-4-9b-chat
当发送包含大量重复内容("Hello, who are you?"重复10000次)的请求时,服务返回了异常结果:
{
"id": "382",
"object": "chat.completion",
"created": 1736934145,
"model": "glm-4-9b-chat",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "",
"tool_calls": null
},
"logprobs": null,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 60008,
"total_tokens": 4035,
"completion_tokens": -55973
}
}
问题分析
从日志中可以发现关键错误信息:
[TM][WARNING] [RejectInvalidRequests] Skipping invalid infer request for id 382, code = 6
[TM][WARNING] [forward] Request failed for 382, code 6
这表明请求因为某种原因被拒绝,错误代码6通常与输入长度超出限制有关。进一步分析发现,GLM4-9b-chat模型默认的上下文长度设置可能不足以处理如此长的输入。
解决方案
经过深入排查,发现可以通过配置session-len参数来调整最大上下文token数量。这个参数控制着模型能够处理的最大上下文长度,对于处理长文本输入至关重要。
正确的做法是在启动服务时明确设置合适的session-len值,例如:
lmdeploy serve api_server ... --session-len 32768 ...
技术建议
-
合理设置上下文长度:根据模型能力和实际应用场景,设置适当的
session-len值。GLM4-9b-chat模型支持较大的上下文窗口,但需要显式配置。 -
输入预处理:在实际应用中,建议对输入文本进行预处理,确保其长度不超过模型限制,避免服务拒绝请求。
-
资源监控:增大上下文长度会增加显存消耗,需要监控GPU资源使用情况,确保不会因内存不足导致服务不稳定。
-
性能权衡:更大的上下文窗口意味着更高的计算开销,需要在模型能力和响应速度之间找到平衡点。
总结
在使用LMDeploy部署大语言模型时,正确配置上下文长度参数是确保服务稳定运行的关键。通过合理设置session-len参数,可以充分发挥模型处理长文本的能力,同时避免因输入过长导致的请求拒绝问题。开发者应根据实际应用需求和硬件资源情况,找到最优的配置方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882