LMDeploy部署GLM4-9b-chat模型时的上下文长度配置问题解析
2025-06-03 22:12:43作者:廉皓灿Ida
问题背景
在使用LMDeploy 0.6.5版本部署GLM4-9b-chat大语言模型时,开发者遇到了一个关于上下文长度限制的问题。当尝试发送超长提示词时,服务返回了异常响应,提示token数量超出限制。
问题现象
开发者启动服务时使用了以下命令:
lmdeploy serve api_server --server-name 0.0.0.0 --server-port 8000 --backend turbomind --dtype auto --tp 1 --cache-max-entry-count 0.3 --model-name glm-4-9b-chat --disable-fastapi-docs --log-level INFO /models/glm-4-9b-chat
当发送包含大量重复内容("Hello, who are you?"重复10000次)的请求时,服务返回了异常结果:
{
"id": "382",
"object": "chat.completion",
"created": 1736934145,
"model": "glm-4-9b-chat",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "",
"tool_calls": null
},
"logprobs": null,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 60008,
"total_tokens": 4035,
"completion_tokens": -55973
}
}
问题分析
从日志中可以发现关键错误信息:
[TM][WARNING] [RejectInvalidRequests] Skipping invalid infer request for id 382, code = 6
[TM][WARNING] [forward] Request failed for 382, code 6
这表明请求因为某种原因被拒绝,错误代码6通常与输入长度超出限制有关。进一步分析发现,GLM4-9b-chat模型默认的上下文长度设置可能不足以处理如此长的输入。
解决方案
经过深入排查,发现可以通过配置session-len参数来调整最大上下文token数量。这个参数控制着模型能够处理的最大上下文长度,对于处理长文本输入至关重要。
正确的做法是在启动服务时明确设置合适的session-len值,例如:
lmdeploy serve api_server ... --session-len 32768 ...
技术建议
-
合理设置上下文长度:根据模型能力和实际应用场景,设置适当的
session-len值。GLM4-9b-chat模型支持较大的上下文窗口,但需要显式配置。 -
输入预处理:在实际应用中,建议对输入文本进行预处理,确保其长度不超过模型限制,避免服务拒绝请求。
-
资源监控:增大上下文长度会增加显存消耗,需要监控GPU资源使用情况,确保不会因内存不足导致服务不稳定。
-
性能权衡:更大的上下文窗口意味着更高的计算开销,需要在模型能力和响应速度之间找到平衡点。
总结
在使用LMDeploy部署大语言模型时,正确配置上下文长度参数是确保服务稳定运行的关键。通过合理设置session-len参数,可以充分发挥模型处理长文本的能力,同时避免因输入过长导致的请求拒绝问题。开发者应根据实际应用需求和硬件资源情况,找到最优的配置方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178