Glances项目Docker Compose部署实践指南
Glances是一款功能强大的跨平台系统监控工具,它能够通过简洁的界面展示CPU、内存、磁盘、网络等系统资源的使用情况。本文将详细介绍如何使用Docker Compose方式部署Glances监控系统,并针对常见问题进行技术解析。
标准Docker Compose配置解析
在Glances项目的Docker部署中,标准的docker-compose.yml文件应包含以下核心配置:
services:
glances:
image: nicolargo/glances:latest-full
restart: unless-stopped
pid: "host"
privileged: true
network_mode: "host"
volumes:
- "/var/run/docker.sock:/var/run/docker.sock:ro"
- "/run/user/1000/podman/podman.sock:/run/user/1000/podman/podman.sock:ro"
- "./glances.conf:/glances/conf/glances.conf"
environment:
- TZ= "Europe/Berlin"
- GLANCES_OPT=-C /glances/conf/glances.conf -w
关键配置说明
-
镜像选择:使用
nicolargo/glances:latest-full官方镜像,该镜像包含所有功能模块 -
重启策略:
unless-stopped确保容器在意外退出时自动重启 -
权限配置:
pid: "host"允许容器访问主机进程信息privileged: true赋予容器访问主机设备的权限
-
网络模式:
host模式使容器直接使用主机网络栈 -
卷挂载:
- Docker/Podman套接字文件挂载,用于容器监控
- 配置文件挂载,实现配置持久化
-
环境变量:
TZ设置时区(如"Europe/Berlin")GLANCES_OPT指定启动参数和配置文件路径
常见问题解决方案
1. 时区变量问题
在原始配置中使用了TZ=${TZ}变量引用方式,这需要预先在环境变量中定义TZ值。对于初学者,建议直接在docker-compose.yml中硬编码时区值,如TZ="Asia/Shanghai"。
2. 构建与镜像选择
原始配置尝试通过Dockerfile构建镜像,但实际项目中应直接使用官方预构建镜像。使用image指令而非build指令可以简化部署流程。
3. 配置文件管理
Glances的配置文件需要预先准备并放置在docker-compose.yml同级目录中。配置文件内容可根据实际监控需求定制,包括:
- 监控项启用/禁用
- 阈值设置
- 插件配置等
最佳实践建议
-
版本控制:建议使用特定版本标签而非latest,如
nicolargo/glances:3.4.0-full,确保部署稳定性 -
资源限制:在生产环境中,建议添加资源限制:
deploy: resources: limits: cpus: '0.5' memory: 512M -
日志管理:配置日志驱动和轮转策略,防止日志文件过大
-
安全加固:
- 避免长期使用privileged模式
- 考虑使用非root用户运行容器
- 定期更新镜像版本
监控功能扩展
通过Glances的Web界面(通过-w参数启用),用户可以:
- 实时查看系统状态
- 历史趋势分析
- 多服务器监控聚合
- 设置告警阈值
对于进阶用户,还可以通过API接口将监控数据集成到现有监控系统中,或使用InfluxDB/Grafana等工具实现更强大的可视化功能。
通过本文介绍的Docker Compose部署方法,用户可以快速搭建功能完善的系统监控环境,并根据实际需求灵活调整配置。Glances的轻量级特性和丰富功能使其成为系统管理员和DevOps工程师的理想监控工具选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00