Async-profiler在Liberica JDK 17中的TTSP分析问题解析
2025-05-28 08:55:10作者:彭桢灵Jeremy
背景与问题现象
在使用async-profiler对基于Liberica JDK 17.0.1的Java应用进行性能分析时,用户尝试通过TTSP(Time To Safepoint)模式进行诊断时遇到了技术障碍。当使用--ttsp
参数或显式指定safepoint_synchronize
相关起止函数时,工具提示"End address not found"错误。经检查发现,该JDK版本的libjvm库中缺失关键符号信息,特别是RuntimeService::record_safepoint_synchronized
等核心函数未被导出。
技术原理深度解析
TTSP分析是async-profiler的重要功能之一,它通过以下机制工作:
- Safepoint同步点检测:JVM在进入安全点时需要等待所有Java线程到达安全状态,耗时过长的等待会形成性能瓶颈
- 符号绑定机制:profiler依赖libjvm导出的特定符号来建立分析触发点
- 采样捕获逻辑:当TTSP延迟超过采样间隔时,会记录导致延迟的线程调用栈
在Liberica JDK早期版本(17.0.1-17.0.7)中,由于编译优化过度,导致大量关键符号未被导出,这使得:
- 标准TTSP模式失效
- 替代方案如指定ShenandoahGC相关函数也无法正常工作
- 最终生成的JFR文件可能为空
解决方案与实践建议
-
版本升级方案:
- 确认Liberica JDK 17.0.13+已修复符号导出问题
- 验证
RuntimeService::record_safepoint_synchronized
符号已正常导出
-
替代分析方案:
- 对于必须使用旧版本的环境,可尝试:
-begin ShenandoahHeap::safepoint_synchronize_begin -end ShenandoahHeap::safepoint_synchronize_end
- 需配合
-XX:+UseShenandoahGC
参数使用 - 建议将采样间隔(
-i
)设为1ms以提高捕获概率
-
分析优化技巧:
- 对于CPU密集型TTSP延迟,使用默认CPU分析模式
- 对于I/O/锁等非CPU等待场景,建议使用Wall-clock模式
- 通过测试用例验证工具有效性(参考TTSP专用测试用例)
技术启示与最佳实践
- JDK实现差异:不同发行版的JDK可能存在二进制兼容性问题
- 生产环境建议:
- 避免使用过旧的JDK补丁版本(如17.0.1)
- 性能分析前验证关键符号是否存在(使用nm/objdump工具)
- 分析结果验证:当获取空JFR文件时,应检查:
- 采样间隔是否合理(长TTSP需匹配适当间隔)
- 是否真实存在可观测的TTSP延迟(通过JVM日志确认)
典型问题排查流程
- 确认JDK版本和构建参数
- 检查libjvm符号表:
nm libjvm.so | grep safepoint_synchronize
- 验证基础功能:
- 先确保常规分析模式正常工作
- 使用已知会产生长TTSP的测试用例验证
- 结合JVM日志分析:
-Xlog:safepoint
通过以上系统化的分析和解决方案,开发者可以更有效地在Liberica JDK环境中进行TTSP相关的性能诊断工作。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K