在Guardrails项目中如何集成本地模型进行验证
2025-06-11 11:08:04作者:侯霆垣
Guardrails是一个用于构建可靠AI系统的开源框架,它可以帮助开发者在AI应用中加入验证层,确保模型输出的安全性和可靠性。本文将详细介绍如何在Guardrails项目中集成本地运行的模型,而不依赖于外部API服务。
本地模型集成方案
对于使用本地下载的模型(如GGUF格式的Llama 2模型),Guardrails提供了灵活的集成方式。开发者可以通过创建自定义调用函数来包装本地模型的推理过程。
使用ctransformers加载本地模型
首先,我们需要使用ctransformers库加载本地模型:
from ctransformers import AutoModelForCausalLM, AutoConfig, Config
# 配置模型参数
conf = AutoConfig(Config(
temperature=0.8,
repetition_penalty=1.1,
batch_size=52,
max_new_tokens=1024,
context_length=2048
))
# 加载本地模型
llm = AutoModelForCausalLM.from_pretrained(
"/path/to/llama-2-13b-chat.Q4_K_S.gguf",
model_type="llama",
config=conf
)
创建自定义调用函数
为了将本地模型与Guardrails集成,我们需要创建一个包装函数:
def custom_llm_callable(prompt):
# 将prompt传递给本地模型
return llm(prompt)
使用Guardrails进行验证
现在,我们可以像使用API模型一样使用这个本地模型:
res = guard(
custom_llm_callable,
prompt_params={"doctors_notes": doctors_notes},
max_tokens=1024,
temperature=0.3,
)
对HuggingFace模型的支持
Guardrails还原生支持HuggingFace的transformers库中的模型。开发者可以直接使用模型的generate方法作为LLM API:
from transformers import AutoModelForCausalLM, AutoTokenizer
# 加载HuggingFace模型
model = AutoModelForCausalLM.from_pretrained("model_name")
tokenizer = AutoTokenizer.from_pretrained("model_name")
# 使用Guardrails验证
res = guard(
model.generate,
prompt_params={"input_text": user_input},
max_tokens=1024
)
技术实现原理
Guardrails的设计采用了适配器模式,使得它可以灵活地支持各种模型调用方式:
- API包装器:对于OpenAI等API服务,Guardrails提供了原生支持
- 自定义适配器:通过创建简单的包装函数,可以集成任何本地运行的模型
- HuggingFace集成:直接支持transformers库的生成接口
这种设计使得开发者可以在保持验证逻辑一致性的同时,自由选择底层模型实现。
最佳实践建议
- 性能考虑:本地模型可能比API服务慢,建议合理设置超时时间
- 资源管理:确保模型加载和推理过程有足够的内存和计算资源
- 参数调优:根据模型特性调整temperature、max_tokens等参数
- 错误处理:在自定义调用函数中加入适当的错误处理逻辑
通过以上方法,开发者可以在Guardrails框架中充分利用本地模型的优势,同时享受Guardrails提供的强大验证功能,构建更加可靠和可控的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
93
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
724
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19