首页
/ Feature-Engine中SelectByShuffling与SMOTE结合使用的注意事项

Feature-Engine中SelectByShuffling与SMOTE结合使用的注意事项

2025-07-05 17:30:48作者:韦蓉瑛

问题背景

在使用Feature-Engine的SelectByShuffling进行特征选择时,用户发现了一个重要现象:在特征选择前后使用SMOTE过采样技术会导致模型性能不一致的问题。具体表现为,使用SelectByShuffling选择特征后,直接在选出的特征上重新训练模型,得到的测试分数与特征选择过程中观察到的性能存在显著差异。

技术分析

SelectByShuffling工作机制

SelectByShuffling是Feature-Engine提供的一种特征选择方法,其核心原理是通过打乱单个特征的值来评估该特征对模型性能的影响。如果一个特征被打乱后模型性能下降明显,说明该特征对模型预测很重要;反之则可以考虑移除。

SMOTE的影响

SMOTE(合成少数类过采样技术)是一种常用的处理类别不平衡的方法,它通过在特征空间中生成新的少数类样本来平衡数据集。关键在于,SMOTE生成新样本的过程依赖于所有特征的空间分布。

当我们在特征选择前应用SMOTE时,生成的合成样本是基于完整特征集的分布。而如果在特征选择后重新应用SMOTE,由于特征空间已经改变,生成的样本分布将与之前完全不同,这直接导致了模型性能的差异。

解决方案

要解决这个问题,可以考虑以下几种方法:

  1. 统一特征空间:确保在特征选择前后使用相同的特征空间进行SMOTE过采样。即在特征选择前先确定要保留的特征,然后在训练时仅对这些特征应用SMOTE。

  2. 调整流程顺序:可以考虑先进行特征选择,然后在选出的特征上应用SMOTE,保持流程的一致性。

  3. 评估策略调整:如果必须在特征选择前使用SMOTE,则需要确保后续评估也在相同的条件下进行,避免不一致的特征空间导致性能差异。

最佳实践建议

  1. 流程一致性:在整个机器学习流程中保持特征空间的一致性至关重要,特别是在涉及数据增强或特征工程步骤时。

  2. 交叉验证策略:使用RepeatedStratifiedKFold等交叉验证方法时,确保每个折叠中的特征处理方式一致。

  3. 性能监控:在特征选择前后监控模型性能时,确保比较的条件相同,避免因数据处理流程差异导致的误导性结果。

总结

Feature-Engine的SelectByShuffling是一个强大的特征选择工具,但在与SMOTE等数据增强技术结合使用时需要特别注意处理流程的顺序和一致性。理解这些技术之间的相互作用对于构建可靠的机器学习流程至关重要。通过合理的流程设计和一致的评估策略,可以确保特征选择结果的可重复性和模型性能的稳定性。

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8