OpenCompass多模态评测套件中HallusionBench综合得分计算方法解析
背景介绍
OpenCompass多模态评测套件(VLMEvalKit)中的HallusionBench是一个专门用于评估多模态模型在幻觉(hallucination)和错觉(illusion)方面表现的基准测试集。该基准测试集能够全面评估模型在视觉问答任务中的准确性、鲁棒性和可靠性。
评测指标详解
HallusionBench主要包含三个核心评测指标:
-
aACC(Answer Accuracy):衡量模型回答准确性的指标,评估模型在给定问题和图像的情况下提供正确答案的能力。
-
qACC(Question Accuracy):评估模型对问题理解能力的指标,检测模型是否能够正确解析和响应不同类型的问题。
-
fACC(Failure Accuracy):专门针对模型失败情况的评估指标,用于分析模型在特定场景下的鲁棒性表现。
综合得分计算方法
虽然原始论文中没有定义"Overall Score"这一综合指标,但OpenCompass团队为了更直观地展示模型在HallusionBench上的整体表现,特别设计了综合得分计算方法:
综合得分 = (aACC + qACC + fACC) / 3
这种计算方法采用简单的算术平均,能够平衡三个不同维度的表现,为研究人员和开发者提供一个单一数值来快速比较不同模型的整体性能。
实际应用建议
在使用HallusionBench进行模型评估时,建议:
-
不仅要关注综合得分,还应该分别分析aACC、qACC和fACC三个子指标,以全面了解模型在不同方面的表现。
-
对于特定应用场景,可以根据需求调整三个指标的权重比例,例如在需要高可靠性的应用中,可以适当增加fACC的权重。
-
综合得分最适合用于模型间的横向比较,但在分析单个模型时,仍需深入各子指标的表现。
通过这种综合评估方法,研究人员可以更全面地了解多模态模型在应对幻觉和错觉方面的能力,为模型优化和改进提供明确方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00