OpenCompass多模态评测套件中HallusionBench综合得分计算方法解析
背景介绍
OpenCompass多模态评测套件(VLMEvalKit)中的HallusionBench是一个专门用于评估多模态模型在幻觉(hallucination)和错觉(illusion)方面表现的基准测试集。该基准测试集能够全面评估模型在视觉问答任务中的准确性、鲁棒性和可靠性。
评测指标详解
HallusionBench主要包含三个核心评测指标:
-
aACC(Answer Accuracy):衡量模型回答准确性的指标,评估模型在给定问题和图像的情况下提供正确答案的能力。
-
qACC(Question Accuracy):评估模型对问题理解能力的指标,检测模型是否能够正确解析和响应不同类型的问题。
-
fACC(Failure Accuracy):专门针对模型失败情况的评估指标,用于分析模型在特定场景下的鲁棒性表现。
综合得分计算方法
虽然原始论文中没有定义"Overall Score"这一综合指标,但OpenCompass团队为了更直观地展示模型在HallusionBench上的整体表现,特别设计了综合得分计算方法:
综合得分 = (aACC + qACC + fACC) / 3
这种计算方法采用简单的算术平均,能够平衡三个不同维度的表现,为研究人员和开发者提供一个单一数值来快速比较不同模型的整体性能。
实际应用建议
在使用HallusionBench进行模型评估时,建议:
-
不仅要关注综合得分,还应该分别分析aACC、qACC和fACC三个子指标,以全面了解模型在不同方面的表现。
-
对于特定应用场景,可以根据需求调整三个指标的权重比例,例如在需要高可靠性的应用中,可以适当增加fACC的权重。
-
综合得分最适合用于模型间的横向比较,但在分析单个模型时,仍需深入各子指标的表现。
通过这种综合评估方法,研究人员可以更全面地了解多模态模型在应对幻觉和错觉方面的能力,为模型优化和改进提供明确方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00