AutoAWQ项目v0.2.9版本发布:量化技术的演进与项目交接
AutoAWQ是一个专注于神经网络模型权重量化的开源项目,它通过先进的AWQ(Activation-aware Weight Quantization)技术,能够在保持模型性能的同时显著减少模型大小和计算资源消耗。该项目自推出以来已支持超过7000个Huggingface模型,累计下载量超过200万次,成为深度学习社区中广受欢迎的模型优化工具。
在最新发布的v0.2.9版本中,AutoAWQ项目迎来了几个重要更新。首先,项目增加了对Qwen2.5-VL、Qwen3和Qwen2.5-Omni等新型模型架构的支持,扩展了其应用范围。其次,修复了多个关键问题,包括缓存维度处理、数据类型不匹配等影响稳定性的bug。特别值得注意的是,该版本改进了混合专家(MoE)模型中非激活专家的断言处理,提升了模型运行的可靠性。
然而,这个版本也标志着AutoAWQ项目的一个重要转折点。由于项目维护的挑战性,开发者宣布AutoAWQ将正式停止维护,并由vLLM项目接手后续开发工作。vLLM项目团队将继续推进AWQ技术的发展,新的实现将作为llm-compressor项目的一部分继续演进。对于Mac用户,MLX-LM项目也提供了AWQ技术的支持方案。
从技术角度看,AWQ量化方法相比传统方法具有显著优势。它通过分析激活分布来指导权重量化过程,能够在4-bit甚至更低的精度下保持模型性能。这种方法特别适合当前大型语言模型的部署需求,可以大幅降低推理时的显存占用和计算成本。AutoAWQ项目的技术积累将继续在新的实现中发挥作用,推动高效推理技术的发展。
对于现有用户,建议关注vLLM项目的llm-compressor实现,以获取持续的更新和支持。AutoAWQ的最后一个稳定版本已在Torch 2.6.0和Transformers 4.51.3环境下完成测试,用户可在此基础上继续使用。未来如遇兼容性问题,建议向相关上游项目报告。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00