免费 Kubernetes 学习资源指南
项目介绍
此开源项目名为“免费 Kubernetes”(非实际链接,示例用),旨在集合并提供一系列关于如何获取免费试用或永久免费的 Kubernetes 环境的指导,特别适合于想要学习和探索 Kubernetes 的开发者。它不仅列出了各大云提供商提供的免费层级服务,还包含了注册步骤提示、基本配置和使用建议,帮助新手快速上手 Kubernetes 而无需投资硬件或承担昂贵的云成本。
项目快速启动
快速启动 Kubernetes 的过程主要依赖于选择一个适合自己的免费服务提供商。以下以 GKE (Google Kubernetes Engine) 为例,展示基本步骤:
步骤一:注册 Google Cloud 账户
前往 Google Cloud Platform 并完成注册流程,需输入信用卡信息但初始不会收费。
步骤二:激活 GCP 信用
领取新账户的 $300 信用额度,有效期为 3 个月。
步骤三:创建 Kubernetes 集群
通过 Google Cloud Console 或 gcloud CLI 创建集群。以下为 CLI 方式示例:
# 安装 gcloud SDK (具体安装步骤不在本文档内)
gcloud components install kubectl
# 初始化 Google Cloud SDK
gcloud init
# 创建 Kubernetes 集群
gcloud container clusters create my-cluster --num-nodes=1 --region=us-central1 --no-enable-ip-alias
步骤四:连接到集群
gcloud container clusters get-credentials my-cluster --region=us-central1
kubectl config view
至此,您已成功设置好 GKE 集群,并可通过 kubectl 进行管理。
应用案例和最佳实践
在进行 Kubernetes 实践时,推荐从简单的部署开始,如部署一个 Nginx 服务作为入门。接下来,可以深入学习服务发现、自动扩展、滚动更新等特性。最佳实践中,务必遵循声明式配置原则,使用 Helm 包管理器来管理复杂应用,确保应用程序的配置可复用和易维护。
示例:部署 Nginx
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80
使用命令部署:
kubectl apply -f nginx-deployment.yaml
典型生态项目
Kubernetes 生态丰富,包括但不限于用于CI/CD的Jenkins X、服务网格Istio、以及用于简化容器部署的Helm。对于初学者,Helm 是非常重要的工具,它允许用户通过“图表”来管理Kubernetes应用的部署。Helm通过其丰富的图表仓库提供了大量预先配置的应用程序部署模板,是管理复杂Kubernetes应用的好帮手。
使用Helm前需先安装Helm客户端并添加相关仓库:
helm repo add stable https://charts.helm.sh/stable
helm repo update
之后,便可以查找和部署图表,例如部署一个MySQL数据库:
helm install stable/mysql --generate-name
本教程仅触及表面,Kubernetes的学习之旅广阔无垠,通过不断实践与探索,你会逐渐掌握这一强大的容器编排工具。记得利用社区资源、官方文档和各类在线课程深化你的知识。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00