NCNN项目嵌入式开发板性能基准测试实践指南
2025-05-10 21:42:45作者:凌朦慧Richard
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
NCNN作为腾讯开源的高性能神经网络推理框架,在嵌入式设备上有着广泛的应用场景。本文将详细介绍如何为NCNN项目贡献新的嵌入式开发板基准测试数据,帮助开发者了解不同硬件平台上的推理性能表现。
基准测试的意义
在嵌入式AI领域,选择合适的硬件平台对项目成功至关重要。通过基准测试可以:
- 量化评估不同开发板的神经网络推理性能
- 为项目选型提供客观数据参考
- 发现框架在不同硬件上的优化空间
开发板选择原则
贡献新开发板测试数据时,应遵循以下原则:
- 优先选择文档中尚未收录的流行开发板
- 关注性能有明显提升的新型号
- 考虑不同架构处理器的代表性产品
测试环境准备
进行基准测试前需要准备:
- 开发板官方推荐的工具链
- 稳定的电源供应
- 散热良好的测试环境
- 干净的Linux系统环境
交叉编译流程
NCNN的交叉编译主要步骤包括:
- 配置工具链路径和环境变量
- 生成适合目标平台的Makefile
- 优化编译选项以获得最佳性能
- 处理可能的依赖项问题
测试执行要点
运行基准测试时需要注意:
- 确保系统负载处于稳定状态
- 多次运行取平均值
- 记录测试时的环境温度
- 监控处理器频率是否稳定
结果分析方法
对测试结果的分析应考虑:
- 不同神经网络模型的性能差异
- 与同类型开发板的横向对比
- 处理器架构对性能的影响
- 内存带宽等瓶颈因素
贡献流程建议
向NCNN项目提交基准测试数据时:
- 确保数据格式与现有文档一致
- 提供详细的测试环境说明
- 包括完整的编译配置参数
- 附加有意义的性能分析
通过规范的基准测试流程,开发者可以为社区提供有价值的性能数据,帮助更多人做出合理的硬件选型决策,同时也促进NCNN框架在不同平台上的优化工作。
ncnn
NCNN是一个轻量级的神经网络推理引擎,专为移动端和嵌入式设备优化。它支持多种硬件平台和深度学习框架,如ARM CPU、Mali GPU、Android、iOS等。特点:高效、低功耗、跨平台。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355