Qwen3项目中Qwen2-57B-A14B模型训练内存优化实践
2025-05-11 21:10:19作者:侯霆垣
在Qwen3项目中使用Qwen2-57B-A14B这类大型混合专家(MoE)模型进行全参数微调时,内存管理是一个关键挑战。本文将从技术角度深入分析这一问题,并提供可行的解决方案。
问题背景
Qwen2-57B-A14B是一个包含570亿参数的大型语言模型,采用混合专家架构。当使用32块A100 GPU(每块80GB显存)进行全参数微调时,即使在2048的输入长度下,反向传播阶段仍会出现显存不足的问题。
技术分析
混合专家模型的内存消耗主要来自以下几个方面:
- 参数存储:57B参数的模型本身需要大量显存
- 激活值:前向传播过程中产生的中间结果
- 梯度计算:反向传播时需要存储的梯度信息
- 优化器状态:如Adam优化器需要保存的动量等信息
解决方案
针对这一问题,有以下几种可行的技术方案:
1. 并行策略组合
推荐采用多种并行策略的组合:
- 流水线并行(PP):将模型按层划分到不同设备
- 张量并行(TP):将单个层的计算分布到多个设备
- 专家并行(EP):专门针对MoE架构,将不同专家分配到不同设备
具体配置建议:
- PP4+TP4:4路流水线并行配合4路张量并行
- PP2+EP8:2路流水线并行配合8路专家并行
2. 硬件资源配置
根据实践经验:
- 最小配置:2节点×8卡(80GB)可支持4K序列长度
- 推荐配置:4节点×8卡(80GB)可获得更好性能
3. 训练框架选择
不同训练框架的支持情况:
- Transformers库:仅支持数据并行和DeepSpeed Zero3策略,对大型MoE模型支持有限
- Megatron-LM:专门为大规模训练设计,支持多种并行策略组合
- DeepSpeed:可结合Zero优化策略,但对专家并行支持有限
实践建议
- 显存监控:训练前使用工具预估显存需求
- 梯度检查点:启用梯度检查点技术减少激活值内存
- 混合精度:使用BF16/FP16混合精度训练
- 分批处理:适当减小批次大小或使用梯度累积
总结
训练Qwen2-57B-A14B这类大型MoE模型需要综合考虑模型架构特点、硬件资源和训练框架能力。通过合理的并行策略组合和资源配置,可以有效地解决显存不足的问题。建议在实际应用中根据具体条件选择最适合的方案组合。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328