Qwen3项目中Qwen2-57B-A14B模型训练内存优化实践
2025-05-11 05:06:00作者:侯霆垣
在Qwen3项目中使用Qwen2-57B-A14B这类大型混合专家(MoE)模型进行全参数微调时,内存管理是一个关键挑战。本文将从技术角度深入分析这一问题,并提供可行的解决方案。
问题背景
Qwen2-57B-A14B是一个包含570亿参数的大型语言模型,采用混合专家架构。当使用32块A100 GPU(每块80GB显存)进行全参数微调时,即使在2048的输入长度下,反向传播阶段仍会出现显存不足的问题。
技术分析
混合专家模型的内存消耗主要来自以下几个方面:
- 参数存储:57B参数的模型本身需要大量显存
- 激活值:前向传播过程中产生的中间结果
- 梯度计算:反向传播时需要存储的梯度信息
- 优化器状态:如Adam优化器需要保存的动量等信息
解决方案
针对这一问题,有以下几种可行的技术方案:
1. 并行策略组合
推荐采用多种并行策略的组合:
- 流水线并行(PP):将模型按层划分到不同设备
- 张量并行(TP):将单个层的计算分布到多个设备
- 专家并行(EP):专门针对MoE架构,将不同专家分配到不同设备
具体配置建议:
- PP4+TP4:4路流水线并行配合4路张量并行
- PP2+EP8:2路流水线并行配合8路专家并行
2. 硬件资源配置
根据实践经验:
- 最小配置:2节点×8卡(80GB)可支持4K序列长度
- 推荐配置:4节点×8卡(80GB)可获得更好性能
3. 训练框架选择
不同训练框架的支持情况:
- Transformers库:仅支持数据并行和DeepSpeed Zero3策略,对大型MoE模型支持有限
- Megatron-LM:专门为大规模训练设计,支持多种并行策略组合
- DeepSpeed:可结合Zero优化策略,但对专家并行支持有限
实践建议
- 显存监控:训练前使用工具预估显存需求
- 梯度检查点:启用梯度检查点技术减少激活值内存
- 混合精度:使用BF16/FP16混合精度训练
- 分批处理:适当减小批次大小或使用梯度累积
总结
训练Qwen2-57B-A14B这类大型MoE模型需要综合考虑模型架构特点、硬件资源和训练框架能力。通过合理的并行策略组合和资源配置,可以有效地解决显存不足的问题。建议在实际应用中根据具体条件选择最适合的方案组合。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217