Nightingale告警系统新增数据源排除功能解析
背景介绍
在企业级监控告警系统Nightingale的最新版本中,开发团队针对大规模Prometheus数据源管理场景新增了一项重要功能——数据源排除功能。这项功能的诞生源于实际生产环境中用户面临的痛点:当需要管理数百个Prometheus集群时,如何高效地配置告警规则同时又能灵活排除特定集群。
功能需求分析
在传统的监控告警配置中,管理员通常面临两种选择:
- 为告警规则手动关联所有需要的数据源(在200个集群的场景下需要点击200次)
- 使用全选功能关联所有数据源,但无法排除特定集群
这两种方式在大规模环境下都存在明显不足。第一种方式操作繁琐,第二种方式缺乏灵活性。特别是在多租户、多业务线的环境中,不同集群可能对同一指标有不同的关注度,强制所有集群接收相同告警会造成干扰。
技术实现方案
Nightingale通过以下方式实现了数据源排除功能:
-
反向选择机制:在数据源关联界面,用户可以先选择"全部数据源",然后通过排除列表指定不需要关联的特定数据源
-
高效存储设计:系统在后端采用位图或标签方式存储排除关系,避免对性能产生影响
-
界面优化:提供直观的排除操作界面,支持批量选择和搜索过滤,方便用户快速定位需要排除的数据源
应用场景
这项功能特别适用于以下场景:
-
大规模Kubernetes集群监控:企业拥有数百个K8s集群,每个集群部署独立Prometheus实例
-
多租户环境:不同业务线或部门对监控指标有不同关注重点
-
灰度发布监控:需要从整体监控中排除正在进行灰度测试的环境
-
特殊集群处理:开发测试环境或特殊用途集群不需要接收生产告警
最佳实践建议
-
命名规范:为数据源建立清晰的命名规范,便于在排除时快速识别
-
标签系统:利用Nightingale的标签功能为数据源分类,可基于标签批量排除
-
定期审查:建立定期审查机制,确保排除列表与业务需求保持一致
-
权限控制:对排除操作设置适当权限,避免误操作导致监控遗漏
总结
Nightingale的数据源排除功能有效解决了大规模监控环境下的告警配置难题,显著提升了运维效率。这一功能的加入使得系统在保持大规模管理能力的同时,也具备了精细化配置的灵活性,是监控告警领域一个实用的创新。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00