MLC-LLM项目中如何指定多GPU设备进行张量并行计算
2025-05-10 17:32:05作者:尤峻淳Whitney
在深度学习模型训练和推理过程中,合理利用多GPU资源可以显著提升计算效率。MLC-LLM作为一个高效的机器学习编译框架,支持通过张量并行(tensor parallelism)技术将大型模型分布在多个GPU上运行。本文将详细介绍如何在MLC-LLM项目中指定特定的GPU设备组进行张量并行计算。
张量并行与GPU设备选择
张量并行是一种模型并行技术,它将模型的不同部分分配到不同的GPU设备上。当设置tensor_parallel_shards=4时,意味着模型将被分割成4个分片,每个分片运行在一个独立的GPU上。
默认情况下,MLC-LLM会从cuda:0开始顺序使用GPU设备。但在实际生产环境中,我们可能需要:
- 避开已经被其他任务占用的GPU
- 将计算任务分配到特定性能的GPU上
- 实现更精细的资源管理
使用CUDA_VISIBLE_DEVICES环境变量
最直接有效的方法是通过设置CUDA_VISIBLE_DEVICES环境变量来控制可见的GPU设备。这个环境变量会限制CUDA运行时只能看到指定的GPU设备,并按照指定的顺序重新编号。
例如,要使用cuda:4到cuda:7这4个GPU设备,可以这样设置:
export CUDA_VISIBLE_DEVICES="4,5,6,7"
设置后,在程序内部:
- 原来的cuda:4将被视为cuda:0
- cuda:5被视为cuda:1
- 以此类推
这样当MLC-LLM使用tensor_parallel_shards=4时,就会自动使用这4个指定的GPU设备。
实现原理
CUDA_VISIBLE_DEVICES的工作原理是:
- 在CUDA运行时初始化时过滤设备列表
- 只保留指定的设备并重新索引
- 应用程序看到的设备编号从0开始连续排列
这种方法不仅适用于MLC-LLM,也是PyTorch、TensorFlow等主流深度学习框架通用的设备指定方式。
其他注意事项
- 设备一致性:确保选择的GPU设备具有相同的计算能力,避免性能瓶颈
- PCIe拓扑:对于需要大量设备间通信的场景,考虑GPU间的连接拓扑
- 内存容量:确保每个GPU有足够的内存容纳模型分片
- 持久化设置:可以将环境变量设置写入shell配置文件(~/.bashrc等)实现持久化
通过合理使用GPU设备选择技术,可以最大化利用计算资源,提高MLC-LLM项目的运行效率。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137