AdGuard过滤器项目:解决CookingGames.com反广告屏蔽脚本问题分析
问题背景
在AdGuard浏览器扩展用户使用过程中,发现知名烹饪游戏网站CookingGames.com的crepes.html页面存在反广告屏蔽检测机制。当用户启用广告拦截功能时,页面会显示干扰性提示,影响正常浏览体验。作为广告拦截解决方案提供商,AdGuard团队需要快速识别并解决这类反广告屏蔽技术。
技术分析
通过对CookingGames.com页面的深入分析,发现该网站采用了典型的反广告屏蔽检测技术。主要实现方式包括:
-
脚本检测机制:网站通过JavaScript代码定期检查特定广告元素或广告相关脚本是否被加载。当检测到广告资源未能正常加载时,触发反广告屏蔽逻辑。
-
DOM操作干扰:检测到广告拦截后,网站会动态修改DOM结构,插入遮挡层或警告信息,强制用户与这些元素交互才能继续使用网站。
-
定时器检测:使用setInterval或setTimeout定期执行检测逻辑,增加了对抗广告拦截器的持续性。
解决方案
AdGuard团队针对这一特定案例采取了以下技术措施:
-
元素隐藏规则:添加CSS选择器规则,直接隐藏网站插入的反广告屏蔽提示元素。这种方法简单有效,但需要持续维护以适应网站的变化。
-
脚本注入拦截:识别并阻止执行特定的反广告屏蔽JavaScript代码,从根本上防止检测逻辑的运行。
-
请求过滤:拦截网站加载的特定广告相关资源请求,避免触发基于资源加载状态的检测机制。
实现细节
在AdGuard过滤器中,具体添加了以下规则:
cookinggames.com#%#//scriptlet('abort-on-property-read', 'checkAdBlock')
cookinggames.com##.adblock-notice
cookinggames.com##div[style*="position: fixed"][style*="background-color: rgba"]
这些规则组合使用,既阻止了检测脚本的执行,又隐藏了可能出现的视觉干扰元素。其中:
- 第一条规则使用脚本注入技术,在检测代码尝试读取特定属性时提前终止执行
- 后两条规则使用CSS选择器隐藏特定的干扰元素
技术挑战与应对
在处理这类反广告屏蔽技术时,主要面临以下挑战:
-
动态变化性:网站可能频繁更新检测逻辑,需要持续监控和调整规则。
-
误报风险:过于激进的拦截规则可能影响网站正常功能,需要精确识别真正属于反广告屏蔽的部分。
-
性能考量:添加的规则应尽可能高效,避免对浏览器性能产生明显影响。
AdGuard团队通过以下方式应对这些挑战:
- 建立自动化监控系统检测规则有效性
- 采用最小干预原则,只针对确认为反广告屏蔽的部分进行拦截
- 优化规则执行效率,优先使用轻量级的CSS选择器
用户影响与建议
对于最终用户而言,这一修复意味着:
- 可以无障碍地访问CookingGames.com的所有游戏内容
- 不再受到反广告屏蔽提示的干扰
- 保持原有的广告拦截效果
建议用户在遇到类似问题时:
- 确保使用最新版本的AdGuard产品
- 定期更新过滤器列表
- 通过官方渠道反馈新发现的反广告屏蔽案例
总结
此次对CookingGames.com反广告屏蔽技术的处理展示了AdGuard团队在应对现代网站反广告屏蔽策略方面的专业能力。通过多层次的技术手段,既有效解决了用户面临的问题,又维护了广告拦截解决方案的可靠性。随着网站技术的不断发展,这类对抗工作将持续进行,AdGuard团队也将不断优化技术方案,为用户提供更好的浏览体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00