AdGuard过滤器项目:解决CookingGames.com反广告屏蔽脚本问题分析
问题背景
在AdGuard浏览器扩展用户使用过程中,发现知名烹饪游戏网站CookingGames.com的crepes.html页面存在反广告屏蔽检测机制。当用户启用广告拦截功能时,页面会显示干扰性提示,影响正常浏览体验。作为广告拦截解决方案提供商,AdGuard团队需要快速识别并解决这类反广告屏蔽技术。
技术分析
通过对CookingGames.com页面的深入分析,发现该网站采用了典型的反广告屏蔽检测技术。主要实现方式包括:
-
脚本检测机制:网站通过JavaScript代码定期检查特定广告元素或广告相关脚本是否被加载。当检测到广告资源未能正常加载时,触发反广告屏蔽逻辑。
-
DOM操作干扰:检测到广告拦截后,网站会动态修改DOM结构,插入遮挡层或警告信息,强制用户与这些元素交互才能继续使用网站。
-
定时器检测:使用setInterval或setTimeout定期执行检测逻辑,增加了对抗广告拦截器的持续性。
解决方案
AdGuard团队针对这一特定案例采取了以下技术措施:
-
元素隐藏规则:添加CSS选择器规则,直接隐藏网站插入的反广告屏蔽提示元素。这种方法简单有效,但需要持续维护以适应网站的变化。
-
脚本注入拦截:识别并阻止执行特定的反广告屏蔽JavaScript代码,从根本上防止检测逻辑的运行。
-
请求过滤:拦截网站加载的特定广告相关资源请求,避免触发基于资源加载状态的检测机制。
实现细节
在AdGuard过滤器中,具体添加了以下规则:
cookinggames.com#%#//scriptlet('abort-on-property-read', 'checkAdBlock')
cookinggames.com##.adblock-notice
cookinggames.com##div[style*="position: fixed"][style*="background-color: rgba"]
这些规则组合使用,既阻止了检测脚本的执行,又隐藏了可能出现的视觉干扰元素。其中:
- 第一条规则使用脚本注入技术,在检测代码尝试读取特定属性时提前终止执行
- 后两条规则使用CSS选择器隐藏特定的干扰元素
技术挑战与应对
在处理这类反广告屏蔽技术时,主要面临以下挑战:
-
动态变化性:网站可能频繁更新检测逻辑,需要持续监控和调整规则。
-
误报风险:过于激进的拦截规则可能影响网站正常功能,需要精确识别真正属于反广告屏蔽的部分。
-
性能考量:添加的规则应尽可能高效,避免对浏览器性能产生明显影响。
AdGuard团队通过以下方式应对这些挑战:
- 建立自动化监控系统检测规则有效性
- 采用最小干预原则,只针对确认为反广告屏蔽的部分进行拦截
- 优化规则执行效率,优先使用轻量级的CSS选择器
用户影响与建议
对于最终用户而言,这一修复意味着:
- 可以无障碍地访问CookingGames.com的所有游戏内容
- 不再受到反广告屏蔽提示的干扰
- 保持原有的广告拦截效果
建议用户在遇到类似问题时:
- 确保使用最新版本的AdGuard产品
- 定期更新过滤器列表
- 通过官方渠道反馈新发现的反广告屏蔽案例
总结
此次对CookingGames.com反广告屏蔽技术的处理展示了AdGuard团队在应对现代网站反广告屏蔽策略方面的专业能力。通过多层次的技术手段,既有效解决了用户面临的问题,又维护了广告拦截解决方案的可靠性。随着网站技术的不断发展,这类对抗工作将持续进行,AdGuard团队也将不断优化技术方案,为用户提供更好的浏览体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00